數(shù)學(xué)分析-高等數(shù)學(xué)-微積分-英語課件-chapter11b_第1頁
數(shù)學(xué)分析-高等數(shù)學(xué)-微積分-英語課件-chapter11b_第2頁
數(shù)學(xué)分析-高等數(shù)學(xué)-微積分-英語課件-chapter11b_第3頁
數(shù)學(xué)分析-高等數(shù)學(xué)-微積分-英語課件-chapter11b_第4頁
數(shù)學(xué)分析-高等數(shù)學(xué)-微積分-英語課件-chapter11b_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、The comparison testsTheorem Suppose that and are series with positive terms, then(i) If is convergent and for all n, then is also convergent.(ii) If is divergent and for all n, then is also divergent.Ex. Determine whether converges.Sol. So the series converges.1hThe comparison testsTheorem SuThe lim

2、it comparison testTheorem Suppose that and are series withpositive terms. Suppose Then(i) when c is a finite number and c0, then either both series converge or both diverge.(ii) when c=0, then the convergence of implies the convergence of(iii) when then the divergence of implies thedivergence of2hTh

3、e limit comparison testTheorExampleEx. Determine whether the following series converges.Sol. (1) diverge. choose then(2) diverge. take then(3) converge for p1 and diverge for take then3hExampleEx. Determine whether tQuestionEx. Determine whether the series converges or diverges.Sol. 4hQuestionEx. De

4、termine whether Alternating seriesAn alternating series is a series whose terms are alternatively positive and negative. For example,The n-th term of an alternating series is of the form where is a positive number.5hAlternating seriesAn alternatiThe alternating series testTheorem If the alternating

5、series satisfies (i) for all n (ii) Then the alternating series is convergent.Ex. The alternating harmonic series is convergent.6hThe alternating series testTheExampleEx. Determine whether the following series converges.Sol. (1) converge (2) convergeQuestion.7hExampleEx. Determine whether tAbsolute

6、convergenceA series is called absolutely convergent if the series of absolute values is convergent.For example, the series is absolutely convergent while the alternating harmonic series is not.A series is called conditionally convergent if it is convergent but not absolutely convergent.Theorem. If a

7、 series is absolutely convergent, then it is convergent.8hAbsolute convergenceA series ExampleEx. Determine whether the following series is convergent.Sol. (1) absolutely convergent (2) conditionally convergent 9hExampleEx. Determine whether tThe ratio testThe ratio test(1) If then is absolutely con

8、vergent.(2) If or then diverges.(3) If the ratio test is inconclusive: that is, noconclusion can be drawn about the convergence of10hThe ratio testThe ratio test10ExampleEx. Test the convergence of the seriesSol. (1) convergent (2) convergent for divergent for11hExampleEx. Test the convergencThe roo

9、t testThe root test(1) If then is absolutely convergent.(2) If or then diverges.(3) If the root test is inconclusive.12hThe root testThe root test12hExampleEx. Test the convergence of the seriesSol. convergent for divergent for13hExampleEx. Test the convergencRearrangementsIf we rearrange the order

10、of the term in a finite sum, then of course the value of the sum remains unchanged. But this is not the case for an infinite series.By a rearrangement of an infinite series we mean a series obtained by simply changing the order of the terms.It turns out that: if is an absolutely convergent series wi

11、th sum , then any rearrangement of has the same sum .However, any conditionally convergent series can be rearranged to give a different sum.14hRearrangementsIf we rearrange Example Ex. Consider the alternating harmonic seriesMultiplying this series by we getorAdding these two series, we obtain15hExa

12、mple Ex. Consider the alterStrategy for testing seriesIf we can see at a glance that then divergenceIf a series is similar to a p-series, such as an algebraic form, or a form containing factorial, then use comparison test.For an alternating series, use alternating series test.16hStrategy for testing

13、 seriesIf Strategy for testing seriesIf n-th powers appear in the series, use root test.If f decreasing and positive, use integral test. Sol. (1) diverge (2) converge (3) diverge (4) converge17hStrategy for testing seriesIf Power seriesA power series is a series of the formwhere x is a variable and

14、are constants called coefficientsof series.For each fixed x, the power series is a usual series. We can test for convergence or divergence.A power series may converge for some values of x and diverge for other values of x. So the sum of the series is a function18hPower seriesA power series is Power

15、seriesFor example, the power seriesconverges to whenMore generally, A series of the formis called a power series in (x-a) or a power series centeredat a or a power series about a.19hPower seriesFor example, the pExampleEx. For what values of x is the power series convergent?Sol. By ratio test,the pow

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論