下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabforMonteCarlosimulationsusingbothaknownengineeringformulaandaDOEequation.byPaulSheehyandEstonMartzMonteCarlosimulationusesrepeatedrandomsamplingt
2、osimulatedataforagivenmathematicalmodelandevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940s,whenscientistsworkingontheatomicbombusedittocalculatetheprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanother.Withuraniuminshortsupply,therewaslittleroomforexperimentaltrialande
3、rror.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddata,theycouldcomputereliableprobabilitiesandreducetheamountofuraniumneededfortesting.Today,simulateddataisroutinelyusedinsituationswhereresourcesarelimitedorgatheringrealdatawouldbetooexpensiveorimpractical.ByusingMinitabsabilitytoea
4、silycreaterandomdata,youcanuseMonteCarlosimulationto:Simulatetherangeofpossibleoutcomestoaidindecision-makingForecastfinancialresultsorestimateprojecttimelinesUnderstandthevariabilityinaprocessorsystemFindproblemswithinaprocessorsystemManageriskbyunderstandingcost/benefitrelationshipsStepsintheMonte
5、CarloApproachDependingonthenumberoffactorsinvolved,simulationscanbeverycomplex.Butatabasiclevel,allMonteCarlosimulationshavefoursimplesteps:1.IdentifytheTransferEquationTodoaMonteCarlosimulation,youneedaquantitativemodelofthebusinessactivity,plan,orprocessyouwishtoexplore.Themathematicalexpressionof
6、yourprocessiscalledthe“transferequation.”Thismaybeaknownengineeringorbusinessformula,oritmaybebasedonamodelcreatedfromadesignedexperiment(DOE)orregressionanalysis.2.DefinetheInputParametersForeachfactorinyourtransferequation,determinehowitsdataaredistributed.Someinputsmayfollowthenormaldistribution,
7、whileothersfollowatriangularoruniformdistribution.Youthenneedtodeterminedistributionparametersforeachinput.Forinstance,youwouldneedtospecifythemeanandstandarddeviationforinputsthatfollowanormaldistribution.3.CreateRandomDataTodovalidsimulation,youmustcreateaverylarge,randomdatasetforeachinputsomethi
8、ngontheorder100,000instances.Theserandomdatapointssimulatethevaluesthatwouldbeseenoveralongperiodforeachinput.Minitabcaneasilycreaterandomdatathatfollowalmostanydistributionyouarelikelytoencounter.4.SimulateandAnalyzeProcessOutputWiththesimulateddatainplace,youcanuseyourtransferequationtocalculatesi
9、mulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertime,giventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.HereshowtoapplytheminMinitab.MonteCarloUsingaKnownEngineeringFo
10、rmulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduct:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperformanceoverthousandsofpumps,givennaturalvariationinpistondiameter(D),strokelength(L),andstrokesperminute(RPM).Ideally,thepumpflowacrossthousandsofpump
11、swillhaveastandarddeviationnogreaterthanml.Step1:IdentifytheTransferEquationThefirststepindoingaMonteCarlosimulationistodeterminethetransferequation.Inthiscase,youcansimplyuseanestablishedengineeringformulathatmeasurespumpflow:Flow(inml)=(D/2)2?L?RPMStep2:DefinetheInputParametersNowyoumustdefinethed
12、istributionandparametersofeachinputusedinthetransferequation.Thepumpspistondiameterandstrokelengthareknown,butyoumustcalculatethestrokes-per-minute(RPM)neededtoattainthedesired12ml/minuteflowrate.Volumepumpedperstrokeisgivenbythisequation:(D/2)2*LGivenD=andL=,eachstrokedisplacesml.Sotoachieveaflowof
13、12ml/minutetheRPMis.Basedontheperformanceofotherpumpsyourfacilityhasmanufactured,youcansaythatpistondiameterisnormallydistributedwithameanofcmandastandarddeviationofcm.Strokelengthisnormallydistributedwithameanofcmandastandarddeviationofcm.Finally,strokesperminuteisnormallydistributedwithameanofRPMa
14、ndastandarddeviationofRPM.Step3:CreateRandomDataNowyourereadytosetupthesimulationinMinitab.WithMinitabyoucaninstantaneouslycreate100,000rowsofsimulateddata.Startingwiththesimulatedpistondiameterdata,chooseCalcRandomDataNormal.Inthedialogbox,enter100,000inNumberofrowsofdatatogenerate,andenter“D”asthe
15、columninwhichtostorethedata.Enterthemeanandstandarddeviationforpistondiameterintheappropriatefields.PressOKtopopulatetheworksheetwith100,000datapointsrandomlysampledfromthespecifiednormaldistribution.ThensimplyrepeatthisprocessforStrokeLength(L)andStrokesperMinute(RPM).Step4:SimulateandAnalyzeProces
16、sOutputNowcreateafourthcolumnintheworksheet,Flow,toholdtheresultsofyourprocessoutputcalculations.Withtherandomlygeneratedinputdatainplace,youcansetupMinitabscalculatortocalculatetheoutputandstoreitintheFlowcolumn.GotoCalcCalculator,andsetuptheflowequationlikethis:Minitabwillquicklycalculatetheoutput
17、foreachrowofsimulateddata.Nowyourereadytolookattheresults.SelectStatBasicStatisticsGraphicalSummaryandselecttheFlowcolumn.Minitabwillgenerateagraphicalsummarythatincludesfourgraphs:ahistogramofdatawithanoverlaidnormalcurve,boxplot,andconfidenceintervalsforthemeanandthemedian.Thegraphicalsummaryalsod
18、isplaysAnderson-DarlingNormalityTestresults,descriptivestatistics,andconfidenceintervalsforthemean,median,andstandarddeviation.ThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:Fortherandomdatageneratedtowritethisarticle,themeanflowrateisbasedon100,000samples.Onaverage,weareontarge
19、t,butthesmallestvaluewasresultsinastandarddeviationofandthelargestwas.Thatsquitearange.Thetransmittedvariation(ofallcomponents)ml,farexceedingthemltarget.Also,weseethatthemltargetfallsoutsideoftheconfidenceintervalforthestandarddeviation.Itlookslikethispumpdesignexhibitstoomuchvariationandneedstobef
20、urtherrefinedbeforeitgoesintoproduction;MonteCarlosimulationwithMinitabletusfindthatoutwithoutincurringtheexpenseofmanufacturingandtestingthousandsofprototypes.Lestyouwonderwhetherthesesimulatedresultsholdup,tryityourself!Creatingdifferentsetsofsimulatedrandomdatawillresultinminorvariations,buttheen
21、dresultanunacceptableamountofvariationintheflowratewillbeconsistenteverytime.ThatsthepoweroftheMonteCarlomethod.MonteCarloUsingaDOEResponseEquationWhatifyoudontknowwhatequationtouse,oryouaretryingtosimulatetheoutcomeofauniqueprocessAnelectronicsmanufacturerhasassignedyoutoimproveitselectrocleaningop
22、eration,whichpreparesmetalpartsforelectroplating.Electroplatingletsmanufacturerscoatrawmaterialswithalayerofadifferentmetaltoachievedesiredcharacteristics.Platingwillnotadheretoadirtysurface,sothecompanyhasacontinuous-flowelectrocleaningsystemthatconnectstoanautomaticelectroplatingmachine.Aconveyerd
23、ipseachpartintoabathwhichsendsvoltagethroughthepart,cleaningit.InadequatecleaningresultsinahighRootMeanSquareAverageRoughnessvalue,orRMS,andpoorsurfacefinish.ProperlycleanedpartshaveasmoothsurfaceandalowRMS.Tooptimizetheprocess,youcanadjusttwocriticalinputs:voltage(Vdc)andcurrentdensity(ASF).Foryour
24、electrocleaningmethod,thetypicalengineeringlimitsforVdcare3to12volts.Limitsforcurrentdensityare10to150ampspersquarefoot(ASF).Step1:IdentifytheTransferEquationYoucannotuseanestablishedtextbookformulaforthisprocess,butyoucansetupaResponseSurfaceDOEinMinitabtodeterminethetransferequation.Responsesurfac
25、eDOEsareoftenusedtooptimizetheresponsebyfindingthebestsettingsforavitalfewcontrollablefactors.Inthiscase,theresponsewillbethesurfacequalityofpartsaftertheyhavebeencleaned.TocreatearesponsesurfaceexperimentinMinitab,chooseStatDOEResponseSurfaceCreateResponseSurfaceDesign.Becausewehavetwofactorsdesign
26、,whichhas13runs.voltage(Vdc)andcurrentdensity(ASF)wellselectatwo-factorcentralcompositeAfterMinitabcreatesyourdesignedexperiment,youneedtoperformyour13experimentalruns,collectthedata,andrecordthesurfaceroughnessofthe13finishedparts.MinitabmakesiteasytoanalyzetheDOEresults,reducethemodel,andcheckassu
27、mptionsusingresidualplots.UsingthefinalmodelandMinitabyourvariables.Inthiscase,yousetvoltstosresponseoptimizer,youcanfindtheoptimumsettingsforandASFtotoobtainaroughnessvalueof.TheresponsesurfaceDOEyieldsthefollowingtransferequationfortheMonteCarlosimulation:22Roughness=?(Vdc)?(ASF)+(Vdc)+(ASF)Step2:
28、DefinetheInputParametersNowyoucansettheparametricdefinitionsforyourMonteCarlosimulationinputs.(Thestandarddeviationsmustbeknownorestimatedbasedonexistingprocessknowledge.)VoltsarenormallydistributedwithameanofVdcandastandarddeviationofVdc.AmpsperSquareFoot(ASF)arenormallydistributedwithameanofASFandastandarddeviationof3ASF.Step3:CreateRandomDataWiththeparametersdefined,itRandomDataNormalssimpletocreate100,000rowsofsimulateddataforourtwoinputsusingMinitabdialog.sCalcStep4:SimulateandAnalyzeProcessOutputNowwecanusetheCalculatortoenterourformula,followedbyStatB
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧餐廳推廣方案
- 智慧養(yǎng)老系統(tǒng)解決方案
- 2023年電子銀漿資金籌措計(jì)劃書
- 卡通襪子課件教學(xué)課件
- 武術(shù)課件制作教學(xué)課件
- 印染剪紙課件教學(xué)課件
- 誠(chéng)子書課件教學(xué)課件
- 4.1 原電池 第2課時(shí) 課件高二上學(xué)期化學(xué)人教版(2019)選擇性必修1
- 酒店用品解決方案
- 不負(fù)人民課件教學(xué)課件
- 江西省南昌市(2024年-2025年小學(xué)四年級(jí)語(yǔ)文)人教版期中考試(上學(xué)期)試卷及答案
- 2024年秋國(guó)開形策大作業(yè)【附3份答案】:中華民族現(xiàn)代文明有哪些鮮明特質(zhì)?建設(shè)中華民族現(xiàn)代文明的路徑是什么
- 2024-2030年環(huán)保涂料產(chǎn)品入市調(diào)查研究報(bào)告
- 2024年商業(yè)攝影師(高級(jí))職業(yè)鑒定理論考試題庫(kù)(含答案)
- 國(guó)際金融考卷
- GB/T 44457-2024加氫站用儲(chǔ)氫壓力容器
- 小學(xué)體育跨學(xué)科主題學(xué)習(xí)教學(xué)設(shè)計(jì):小小志愿軍
- 2024江西南昌市政公用集團(tuán)招聘58人(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- 留置胃管課件
- 購(gòu)房返傭金協(xié)議書(2024版)
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
評(píng)論
0/150
提交評(píng)論