2022屆吉林省白山高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
2022屆吉林省白山高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
2022屆吉林省白山高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
2022屆吉林省白山高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
2022屆吉林省白山高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過點(diǎn),則橢圓離心率的取值范圍是( )ABCD2函數(shù)的圖象大致是()ABCD3在正方體中,E是棱的中點(diǎn),F(xiàn)是

2、側(cè)面內(nèi)的動點(diǎn),且與平面的垂線垂直,如圖所示,下列說法不正確的是( )A點(diǎn)F的軌跡是一條線段B與BE是異面直線C與不可能平行D三棱錐的體積為定值4已知,則的大小關(guān)系為( )ABCD5第七屆世界軍人運(yùn)動會于2019年10月18日至27日在中國武漢舉行,中國隊(duì)以133金64銀42銅位居金牌榜和獎牌榜的首位.運(yùn)動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運(yùn)動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是( )ABCD6如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是( )ABCD87設(shè)為非零

3、實(shí)數(shù),且,則( )ABCD8已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是( )ABCD192019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)

4、護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨(dú)立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則( )ABCD10函數(shù)的值域?yàn)椋?)ABCD11如圖所示,正方體的棱,的中點(diǎn)分別為,則直線與平面所成角的正弦值為( )ABCD12已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為( )AB3C2D二、填空題:本題共4小題,每小題5分,共20分。13九章算術(shù)卷5商功記載一個問題“今有圓堡瑽,周四丈八

5、尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為_.14在中,為定長,若的面積的最大值為,則邊的長為_15不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為_.16滿足線性的約束條件的目標(biāo)函數(shù)的最大值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)為了加強(qiáng)環(huán)保知識的宣傳,某學(xué)校組織了垃圾分類知識竟賽活動.活動設(shè)置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、

6、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷將每張卡片放入對應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望.18(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項(xiàng)和為,滿足,且成等差數(shù)列.(1)求的通項(xiàng)公式;(

7、2)若數(shù)列滿足,求的值.19(12分)每年3月20日是國際幸福日,某電視臺隨機(jī)調(diào)查某一社區(qū)人們的幸福度現(xiàn)從該社區(qū)群中隨機(jī)抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!?)求從這18人中隨機(jī)選取3人,至少有1人是“很幸?!钡母怕?;()以這18人的樣本數(shù)據(jù)來估計(jì)整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸?!钡娜藬?shù),求的分布列及20(12分)健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會員統(tǒng)計(jì)它們的

8、消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計(jì)1位會員至少消費(fèi)兩次的概率(2)某會員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機(jī)抽取兩位,記從這兩位會員的消費(fèi)獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望21(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.22(10分)已知橢圓:的長半軸長為,點(diǎn)(為橢圓的離心率)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)如圖,為直線上任一

9、點(diǎn),過點(diǎn)橢圓上點(diǎn)處的切線為,切點(diǎn)分別,直線與直線,分別交于,兩點(diǎn),點(diǎn),的縱坐標(biāo)分別為,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.2C【解析】根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】,函數(shù)為奇函數(shù),排除選項(xiàng)A,B;又當(dāng)時,故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注

10、意奇偶性及特殊值的用法,屬于基礎(chǔ)題.3C【解析】分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷【詳解】對于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、, ,平面,平面,平面同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動點(diǎn)正確對于,平面平面,和平面相交,與是異面直線,正確對于,由知,平面平面,與不可能平行,錯誤對于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題4D【解析】由指數(shù)函數(shù)的圖

11、像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,所以最?。欢蓪?shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.5A【解析】根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只

12、有一種分法,與場地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點(diǎn)睛】本題考查組合的應(yīng)用和概率的計(jì)算,屬于基礎(chǔ)題.6A【解析】由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,故選:A【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵7C【解析】取,計(jì)算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,故正確;取,計(jì)算知錯誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運(yùn)用.8B【解析】先根據(jù)導(dǎo)數(shù)的幾何意義寫出 在 兩點(diǎn)處的切線方程,再

13、利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù) ,結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng) 時,則;當(dāng)時,則.設(shè) 為函數(shù)圖像上的兩點(diǎn),當(dāng) 或時,不符合題意,故.則在 處的切線方程為;在 處的切線方程為.由兩切線重合可知 ,整理得.不妨設(shè)則 ,由 可得則當(dāng)時, 的最大值為.則在 上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出 和 的函數(shù)關(guān)系式.本題的易錯點(diǎn)是計(jì)算.9A【解析】根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染

14、高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,.即設(shè),則當(dāng)且僅當(dāng)即時取等號,即.故選:A【點(diǎn)睛】本題主要考查概率的計(jì)算,涉及相互獨(dú)立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.10A【解析】由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取

15、值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.11C【解析】以D為原點(diǎn),DA,DC,DD1 分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCDA1B1C1D1的棱長為2,則,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為,則sin|,直線與平面所成角的正弦值為.故選C【點(diǎn)睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題12D【解析】本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)

16、可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難二、填空題:本題共4小題,每小題5分,共20分。133【解析】根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.14【解析】設(shè),以為原點(diǎn),為軸建系,則,設(shè),利用求向量模的公式,可得,根據(jù)三

17、角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,設(shè),則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,建系是關(guān)鍵,屬于難題.15【解析】根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,當(dāng)時取等號,由可知,當(dāng)時取等號,當(dāng)有解時,令,則,在上單調(diào)遞增,又,使得,則,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)

18、化能力和計(jì)算能力.161【解析】作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值?!驹斀狻坑?,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點(diǎn)時,截距最小,此時取得最大值。由 ,解得 ,代入直線,得。【點(diǎn)睛】本題主要考查簡單的線性規(guī)劃問題的解法平移法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)所抽取的人中得分落在組和內(nèi)的人數(shù)分別為人、人;(2)分布列見解析,.【解析】(1)將分別乘以區(qū)間、對應(yīng)的矩形面積可得出結(jié)果;(2)由題可知,隨機(jī)變量的可能取值為、,利用超幾何分布概率公式計(jì)算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變

19、量的分布列,并由此計(jì)算出隨機(jī)變量的數(shù)學(xué)期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數(shù)有(人),得分落在組的人數(shù)有(人).因此,所抽取的人中得分落在組的人數(shù)有人,得分落在組的人數(shù)有人;(2)由題意可知,隨機(jī)變量的所有可能取值為、,所以,隨機(jī)變量的分布列為:所以,隨機(jī)變量的期望為.【點(diǎn)睛】本題考查利用頻率分布直方圖計(jì)算頻數(shù),同時也考查了離散型隨機(jī)變量分布列與數(shù)學(xué)期望的求解,考查計(jì)算能力,屬于基礎(chǔ)題.18(1)(2)【解析】(1)由公比表示出,由成等差數(shù)列可求得,從而數(shù)列的通項(xiàng)公式;(2)求(1)得,然后對和式兩兩并項(xiàng)后利用等差數(shù)列的前項(xiàng)和公式可求解【詳解】(1)是等比數(shù)列,且成等差數(shù)

20、列,即,解得:或,(2)【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式,考查并項(xiàng)求和法及等差數(shù)列的項(xiàng)和公式本題求數(shù)列通項(xiàng)公式所用方法為基本量法,求和是用并項(xiàng)求和法數(shù)列的求和除公式法外,還有錯位相關(guān)法、裂項(xiàng)相消法、分組(并項(xiàng))求和法等等19 (). ()見解析.【解析】()人中很幸福的有人,可以先計(jì)算其逆事件,即人都認(rèn)為不很幸福的概率,再用減去人都認(rèn)為不很幸福的概率即可;()根據(jù)題意,隨機(jī)變量,列出分布列,根據(jù)公式求出期望即可【詳解】()設(shè)事件抽出的人至少有人是“很幸?!钡?,則表示人都認(rèn)為不很幸福()根據(jù)題意,隨機(jī)變量,的可能的取值為;所以隨機(jī)變量的分布列為:所以的期望【點(diǎn)睛】本題考查了離散型隨機(jī)變量的概率

21、分布列,數(shù)學(xué)期望的求解,概率分布中的二項(xiàng)分布問題,屬于常規(guī)題型20(1)(2)22.5(3)見解析,【解析】(1)根據(jù)頻數(shù)計(jì)算頻率,得出概率;(2)根據(jù)優(yōu)惠標(biāo)準(zhǔn)計(jì)算平均利潤;(3)求出各種情況對應(yīng)的的值和概率,得出分布列,從而計(jì)算出數(shù)學(xué)期望【詳解】解:(1)估計(jì)1位會員至少消費(fèi)兩次的概率;(2)第1次消費(fèi)利潤;第2次消費(fèi)利潤;第3次消費(fèi)利潤;第4次消費(fèi)利潤;這4次消費(fèi)獲得的平均利潤:(3)1次消費(fèi)利潤是27,概率是;2次消費(fèi)利潤是,概率是;3次消費(fèi)利潤是,概率是;4次消費(fèi)利潤是,概率是;由題意:故分布列為: 0 期望為: 【點(diǎn)睛】本題考查概率、平均利潤、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題21(1)證明見解析;(2)見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論