福建省南安市2023學(xué)年高考數(shù)學(xué)四模試卷含解析_第1頁
福建省南安市2023學(xué)年高考數(shù)學(xué)四模試卷含解析_第2頁
福建省南安市2023學(xué)年高考數(shù)學(xué)四模試卷含解析_第3頁
福建省南安市2023學(xué)年高考數(shù)學(xué)四模試卷含解析_第4頁
福建省南安市2023學(xué)年高考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2023年高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1觀察下列各式:,根據(jù)以上規(guī)律,則( )ABCD2設(shè)函數(shù),則函數(shù)的圖像可能為( )ABCD3函數(shù)(其中是

2、自然對數(shù)的底數(shù))的大致圖像為( )ABCD4已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,的大小關(guān)系為( )ABCD5執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為( )ABCD6函數(shù)(或)的圖象大致是( )ABCD7中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是ABCD8第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射

3、擊、田徑、籃球、游泳四個運動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是( )ABCD9將函數(shù)向左平移個單位,得到的圖象,則滿足( )A圖象關(guān)于點對稱,在區(qū)間上為增函數(shù)B函數(shù)最大值為2,圖象關(guān)于點對稱C圖象關(guān)于直線對稱,在上的最小值為1D最小正周期為,在有兩個根10若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是( )A36 cm3B48 cm3C60 cm3D72 cm311設(shè),則( )ABCD12如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關(guān)于原點的對稱點為,滿足,且,則雙曲線的離心率是( ).ABCD二、填空

4、題:本題共4小題,每小題5分,共20分。13某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1 000名學(xué)生的成績,并根據(jù)這1 000名學(xué)生的成績畫出樣本的頻率分布直方圖(如圖),則成績在250,400)內(nèi)的學(xué)生共有_人14若,則_.15雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為_,離心率為_.16設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,已知四邊形的直角梯形,BC,為線段的中點,平面,為線段上一點(不與端點重合)(1)若

5、,()求證:PC平面;()求平面與平面所成的銳二面角的余弦值;(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由18(12分)已知等差數(shù)列an的各項均為正數(shù),Sn為等差數(shù)列an的前n項和,.(1)求數(shù)列an的通項an;(2)設(shè)bnan3n,求數(shù)列bn的前n項和Tn.19(12分)已知,求的最小值.20(12分)已知函數(shù)(1)求不等式的解集;(2)若函數(shù)的定義域為,求實數(shù) 的取值范圍21(12分)如圖,在四棱錐中,平面平面ABCD,底面ABCD是邊長為2的菱形,點E,F(xiàn)分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.求證:(1)直線平面EFG

6、;(2)直線平面SDB.22(10分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計算【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,故選:B【點睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項歸納出遞推關(guān)系,從而可確定數(shù)列的一些項2B【解析】根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【

7、詳解】定義域為: ,函數(shù)為偶函數(shù),排除 ,排除 故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.3D【解析】 由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱, 且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱, 故選D.4C【解析】根據(jù)題意,得,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.5B【解析】根據(jù)程序框圖知當(dāng)時,循環(huán)終止,此時

8、,即可得答案.【詳解】,.運行第一次,不成立,運行第二次,不成立,運行第三次,不成立,運行第四次,不成立,運行第五次,成立,輸出i的值為11,結(jié)束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.6A【解析】確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對稱,排除B,C,當(dāng)時,排除D,故選:A【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、

9、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結(jié)論7A【解析】詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。8A【解析】根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故

10、選:A.【點睛】本題考查組合的應(yīng)用和概率的計算,屬于基礎(chǔ)題.9C【解析】由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當(dāng)時,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當(dāng),由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)

11、的綜合應(yīng)用,屬于中檔題.10B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.11D【解析】由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因為,則,且,所以,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.12C【解析】易得,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13

12、750【解析】因為0.001+0.001+0.004+a+0.005+0.00350=1,得a=0.006所以10000.004+0.006+0.00514【解析】由, 得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結(jié)果.【詳解】因為, 所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.152 2 【解析】設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設(shè)雙曲線的右焦點為.周長為:.當(dāng)共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲

13、線周長的最值問題,離心率,實軸長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.16【解析】根據(jù)漸近線得到,計算得到離心率.【詳解】,一條漸近線方程為:,故,.故答案為:.【點睛】本題考查了雙曲線的漸近線和離心率,意在考查學(xué)生的計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)()證明見解析()(2)存在,【解析】(1)(i)連接交于點,連接,依題意易證四邊形為平行四邊形,從而有,由此能證明PC平面(ii)推導(dǎo)出,以為原點建立空間直角坐標系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)()證明:連接交于點,連接,因為為線段的中點,所以,因為,所

14、以因為所以四邊形為平行四邊形所以又因為,所以又因為平面,平面,所以平面()解:如圖,在平行四邊形中因為,所以以為原點建立空間直角坐標系則,所以, 平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,設(shè)平面的法向量為,則,取,得,因為直線與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識,考查了推理能力與計算能力,屬于中檔題.18(1).(2)【解析】(

15、1)先設(shè)等差數(shù)列an的公差為d(d0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列an的通項an;(2)先根據(jù)第(1)題的結(jié)果計算出數(shù)列bn的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列an的公差為d(d0),則a4a5(1+3d)(1+4d)11,整理,得12d2+7d100,解得d(舍去),或d,an1(n1),nN*.(2)由(1)知,bnan3n3n(2n+1)3n1,Tnb1+b2+b3+bn31+531+732+(2n+1)3n1,3Tn331+532+(2n1)3n1+(2n+1)3n,兩式相減,可得:2Tn

16、31+231+232+23n1(2n+1)3n3+2(31+32+3n1)(2n+1)3n3+2(2n+1)3n2n3n,Tnn3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學(xué)運算能力.屬于中檔題.19 【解析】討論和的情況,然后再分對稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時,函數(shù)的圖象思維對稱軸方程為當(dāng)時,函數(shù)的最小值為當(dāng)時,函數(shù)的最小值為當(dāng)時,函數(shù)的最小值為綜上,【點睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討

17、論的數(shù)學(xué)思想,屬于中檔題。20 (1) (2) 【解析】(1)分類討論,去掉絕對值,化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集即可(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,根據(jù)絕對值不等式的性質(zhì)求得最小值即可得到答案【詳解】(1)不等式或或,解得或,即x0,所以原不等式的解集為(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,又,當(dāng)且僅當(dāng)時取等,只需最小值,即所以實數(shù)a的取值范圍是【點睛】本題考查絕對值不等式的解法,考查利用絕對值三角不等式求最值,屬基礎(chǔ)題21(1)見解析(2)見解析【解析】(1) 連接AC、BD交于點O,交EF于點H,連接GH,再證明即可.(2)

18、證明與即可.【詳解】(1)連接AC、BD交于點O,交EF于點H,連接GH,所以O(shè)為AC的中點,H為OC的中點,由E、F為DC、BC的中點,再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG. (2)在中,由余弦定理得,即,解得,由勾股定理逆定理可知,因為側(cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因為底面ABCD是菱形,所以,因為,所以平面SDB.【點睛】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.22(1)個;(1)存在,.【解析】試題分析:(1)設(shè),對其求導(dǎo),及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍試題解析:(1)設(shè),1分令,得遞增;令,得遞減,1分,即,3分設(shè),結(jié)合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為15分(或由方程在上有兩根可得)(1)假設(shè)存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立 ,6分設(shè),令,得遞增;令,得遞減,當(dāng)即時,4故當(dāng)時,對恒成立,8分當(dāng)即時,在上遞減,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論