版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學年河南省鄭州市某學校數(shù)學高職單招試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.函數(shù)f(x)=log2(3x-1)的定義域為()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
2.函數(shù)y=lg(x+1)的定義域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)
3.以坐標軸為對稱軸,離心率為,半長軸為3的橢圓方程是()A.
B.或
C.
D.或
4.在△ABC,A=60°,B=75°,a=10,則c=()A.
B.
C.
D.
5.設(shè)集合A={x|x≤2或x≥6},B={x||x-1|≤3},則為A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]
6.A.
B.
C.
D.U
7.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12
8.A.{-3}
B.{3}
C.{-3,3}
D.
9.直線x-y=0,被圓x2+y2=1截得的弦長為()A.
B.1
C.4
D.2
10.執(zhí)行如圖所示的程序,若輸人的實數(shù)x=4,則輸出結(jié)果為()A.4B.3C.2D.1/4
二、填空題(10題)11.已知_____.
12.某校有老師200名,男學生1200名,女學生1000名,現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為240的樣本,則從女生中抽取的人數(shù)為______.
13.
14.不等式|x-3|<1的解集是
。
15._____;_____.
16.設(shè)lgx=a,則lg(1000x)=
。
17.為橢圓的焦點,P為橢圓上任一點,則的周長是_____.
18.有一長為16m的籬笆要圍成一個矩形場地,則矩形場地的最大面積是________m2.
19.從含有質(zhì)地均勻且大小相同的2個紅球、N個白球的口袋中取出一球,若取到紅球的概率為2/5,則取得白球的概率等于______.
20.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.
三、計算題(5題)21.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
22.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
23.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
24.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
25.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
四、證明題(5題)26.△ABC的三邊分別為a,b,c,為且,求證∠C=
27.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
28.己知sin(θ+α)=sin(θ+β),求證:
29.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
30.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
五、簡答題(5題)31.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。
32.已知是等差數(shù)列的前n項和,若,.求公差d.
33.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。
34.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
35.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程
六、綜合題(5題)36.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
38.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
39.
40.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
參考答案
1.A函數(shù)的定義.由3x-1>0,得3x>1,即3x>30,∴x>0.
2.C函數(shù)的定義.x+1>0所以.x>-1.
3.B由題意可知,焦點在x軸或y軸上,所以標準方程有兩個,而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。
4.C解三角形的正弦定理的運
5.A由題可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。
6.B
7.C
8.C
9.D直線與圓相交的性質(zhì).直線x-y=0過圓心(0,0),故該直線被圓x2+y2=1所截弦長為圓的直徑的長度2.
10.C三角函數(shù)的運算∵x=4>1,∴y=㏒24=2
11.
12.100分層抽樣方法.各層之比為200:1200:1000=1:6:5推出從女生中抽取的人數(shù)240×5/12=100.
13.2π/3
14.
15.2
16.3+alg(1000x)=lg(1000)+lgx=3+a。
17.18,
18.16.將實際問題求最值的問題轉(zhuǎn)化為二次函數(shù)在某個區(qū)間上的最值問題.設(shè)矩形的長為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
19.3/5古典概型的概率公式.由題可得,取出紅球的概率為2/2+n=2/5,所以n=3,即白球個數(shù)為3,取出白球的概率為3/5.
20.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
21.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
22.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
23.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
24.
25.
26.
27.
28.
29.
30.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
31.
32.根據(jù)等差數(shù)列前n項和公式得解得:d=4
33.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
34.原式=
35.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為
36.
37.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當a=4時,b
=4,此時r=4,圓的方程為(x-4)2
+(y-4)2=16當a=1時,b
=-1,此時r=1,圓的方程為(x-1)2
+(y+1)2=1
38.
39.
40.解:(1)直線l過A(0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小區(qū)商業(yè)街物業(yè)社區(qū)文化活動贊助與支持服務(wù)合同2篇
- 2025年陶瓷行業(yè)標準制定與實施合同3篇
- 2025年私家車租賃車輛檢測與評估服務(wù)合同3篇
- 2025年勞務(wù)派遣合同審查協(xié)議
- 2025年云服務(wù)監(jiān)控協(xié)議
- 2025版?zhèn)€人房屋產(chǎn)權(quán)轉(zhuǎn)移合同模板4篇
- 二零二五年度綠色建筑改造項目合同書4篇
- 2025年垃圾處理和解協(xié)議
- 2025年混合贈與合同與贈與稅
- 2025版協(xié)議離婚法律援助與調(diào)解服務(wù)協(xié)議3篇
- 第1課 隋朝統(tǒng)一與滅亡 課件(26張)2024-2025學年部編版七年級歷史下冊
- 2025-2030年中國糖醇市場運行狀況及投資前景趨勢分析報告
- 冬日暖陽健康守護
- 水處理藥劑采購項目技術(shù)方案(技術(shù)方案)
- 2024級高一上期期中測試數(shù)學試題含答案
- 山東省2024-2025學年高三上學期新高考聯(lián)合質(zhì)量測評10月聯(lián)考英語試題
- 不間斷電源UPS知識培訓
- 三年級除法豎式300道題及答案
- 2024年江蘇省徐州市中考一模數(shù)學試題(含答案)
- 新一代飛機維護技術(shù)
- 幼兒園教師培訓:計數(shù)(數(shù)數(shù))的核心經(jīng)驗
評論
0/150
提交評論