(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)02《五種導(dǎo)數(shù)及其應(yīng)用中的數(shù)學(xué)思想》(解析版)_第1頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)02《五種導(dǎo)數(shù)及其應(yīng)用中的數(shù)學(xué)思想》(解析版)_第2頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)02《五種導(dǎo)數(shù)及其應(yīng)用中的數(shù)學(xué)思想》(解析版)_第3頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)02《五種導(dǎo)數(shù)及其應(yīng)用中的數(shù)學(xué)思想》(解析版)_第4頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)02《五種導(dǎo)數(shù)及其應(yīng)用中的數(shù)學(xué)思想》(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重難點(diǎn)02五種導(dǎo)數(shù)及其應(yīng)用中的數(shù)學(xué)思想(核心考點(diǎn)講與練)題型一:函數(shù)與方程思想一、單選題1.(2022·廣西柳州·三模(理))若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用導(dǎo)數(shù)的幾何意義求出切線方程,結(jié)合題設(shè)可得SKIPIF1<0,再根據(jù)目標(biāo)式構(gòu)造SKIPIF1<0,利用導(dǎo)數(shù)求其最大值即可.【詳解】由題設(shè),SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0遞減;所以SKIPIF1<0,故SKIPIF1<0的最大值SKIPIF1<0.故選:A2.(2022·浙江·寧波市鄞州高級(jí)中學(xué)高三開(kāi)學(xué)考試)已知實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)SKIPIF1<0是SKIPIF1<0的兩個(gè)零點(diǎn)且SKIPIF1<0,應(yīng)用根與系數(shù)關(guān)系求得SKIPIF1<0,SKIPIF1<0,進(jìn)而代換目標(biāo)式得到以SKIPIF1<0為參數(shù)、SKIPIF1<0為自變量的二次函數(shù),由二次函數(shù)的性質(zhì)可得SKIPIF1<0,構(gòu)造函數(shù)并應(yīng)用導(dǎo)數(shù)研究單調(diào)性,即可求最大值.【詳解】令SKIPIF1<0是SKIPIF1<0的兩個(gè)零點(diǎn),由題設(shè)若SKIPIF1<0,由根與系數(shù)關(guān)系有:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0.綜上,SKIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0的最大值SKIPIF1<0.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:設(shè)SKIPIF1<0的零點(diǎn)并注意SKIPIF1<0,由根與系數(shù)關(guān)系用零點(diǎn)表示m、n,進(jìn)而轉(zhuǎn)化為以SKIPIF1<0為自變量的二次函數(shù)形式,根據(jù)其開(kāi)口方向及其最值得到不等關(guān)系,最后構(gòu)造函數(shù)并應(yīng)用導(dǎo)數(shù)求不等式中關(guān)于SKIPIF1<0表達(dá)式的值域.二、多選題3.(2022·全國(guó)·高三專題練習(xí))在平面直角坐標(biāo)系中,我們把橫縱坐標(biāo)相等的點(diǎn)稱之為“完美點(diǎn)”,下列函數(shù)的圖象中存在完美點(diǎn)的是(

)A.y=﹣2x B.y=x﹣6 C.y=SKIPIF1<0 D.y=x2﹣3x+4【答案】AC【分析】橫縱坐標(biāo)相等的函數(shù)即SKIPIF1<0,與SKIPIF1<0有交點(diǎn)即存在完美點(diǎn),依次計(jì)算即可.【詳解】橫縱坐標(biāo)相等的函數(shù)即SKIPIF1<0,與SKIPIF1<0有交點(diǎn)即存在完美點(diǎn),對(duì)于A,SKIPIF1<0,解得SKIPIF1<0,即存在完美點(diǎn)SKIPIF1<0,對(duì)于B,SKIPIF1<0,無(wú)解,即不存在完美點(diǎn),對(duì)于C,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即存在完美點(diǎn)SKIPIF1<0,SKIPIF1<0對(duì)于D,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即不存在完美點(diǎn),故選:AC.三、雙空題4.(2022·云南師大附中高三階段練習(xí)(文))如圖,某城市公園內(nèi)有一矩形空地SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,現(xiàn)規(guī)劃在邊SKIPIF1<0上分別取點(diǎn)E,F(xiàn),G,且滿足SKIPIF1<0,在△SKIPIF1<0內(nèi)建造噴泉瀑布,在△SKIPIF1<0內(nèi)種植花卉,其余區(qū)域鋪設(shè)草坪,并修建棧道SKIPIF1<0作為觀光路線(不考慮寬度),則當(dāng)SKIPIF1<0______時(shí),棧道SKIPIF1<0最短,此時(shí)SKIPIF1<0_______.【答案】

SKIPIF1<0

SKIPIF1<0【分析】由題設(shè)有SKIPIF1<0△SKIPIF1<0SKIPIF1<0SKIPIF1<0△SKIPIF1<0,設(shè)SKIPIF1<0,根據(jù)圖形中邊角關(guān)系,結(jié)合三角函數(shù)可得SKIPIF1<0SKIPIF1<0,注意SKIPIF1<0的范圍,進(jìn)而應(yīng)用換元法并構(gòu)造函數(shù),利用導(dǎo)數(shù)求最值.【詳解】由題意,SKIPIF1<0△SKIPIF1<0SKIPIF1<0SKIPIF1<0△SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.在SKIPIF1<0△SKIPIF1<0中SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,解得SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0遞增;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0遞減;所以SKIPIF1<0,SKIPIF1<0有最大值,則SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:注意根據(jù)SKIPIF1<0,SKIPIF1<0的長(zhǎng)度判斷SKIPIF1<0對(duì)應(yīng)三角函數(shù)值的范圍.四、解答題5.(2021·全國(guó)·模擬預(yù)測(cè))SKIPIF1<0.(Ⅰ)若函數(shù)SKIPIF1<0在定義域內(nèi)有兩個(gè)極值點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍;(Ⅱ)若函數(shù)SKIPIF1<0有三個(gè)不相同的零點(diǎn),求證:SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)證明見(jiàn)解析.【分析】(Ⅰ)利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系及零點(diǎn)的性質(zhì),即可求解;(Ⅱ)構(gòu)造函數(shù),利用零點(diǎn)存在性定理及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得證.【詳解】(Ⅰ)由題得SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0.∵SKIPIF1<0有兩個(gè)極值點(diǎn),∴SKIPIF1<0在SKIPIF1<0內(nèi)有兩個(gè)零點(diǎn).設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0的最小值為SKIPIF1<0,∴SKIPIF1<0.(Ⅱ)證明:SKIPIF1<0,設(shè)SKIPIF1<0的兩根為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,依題意有三個(gè)不同的零點(diǎn),∴SKIPIF1<0,SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)零點(diǎn)存在性定理得SKIPIF1<0,使SKIPIF1<0;SKIPIF1<0,使SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.6.(2021·河南平頂山·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0平行(1)求實(shí)數(shù)SKIPIF1<0的值,并求SKIPIF1<0的極值;(2)若方程SKIPIF1<0有兩個(gè)不相等的實(shí)根SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0,極小值為SKIPIF1<0;(2)證明見(jiàn)解析.【分析】(1)求出函數(shù)的導(dǎo)數(shù),利用切線的斜率求出SKIPIF1<0的值,解關(guān)于導(dǎo)函數(shù)的不等式,分析函數(shù)的單調(diào)區(qū)間即可得到極值;(2)令SKIPIF1<0,SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,原題轉(zhuǎn)化為SKIPIF1<0有兩個(gè)實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)可得SKIPIF1<0,再構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)可得SKIPIF1<0,利用單調(diào)性,可得SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0即可求證.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,由題意知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0的極小值為SKIPIF1<0(2)由(1)知SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,不妨設(shè)SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則原題轉(zhuǎn)化為SKIPIF1<0有兩個(gè)實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0圖象可知,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0,得到SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.7.(2022·全國(guó)·高三專題練習(xí))某地打算修建一條公路,但設(shè)計(jì)路線正好經(jīng)過(guò)一個(gè)野生動(dòng)物遷徙路線,為了保護(hù)野生動(dòng)物,決定修建高架橋,為野生動(dòng)物的遷徙提供安全通道.若高架橋的兩端及兩端的橋墩已建好,兩端的橋墩相距1200米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測(cè),一個(gè)橋墩的工程費(fèi)用為500萬(wàn)元,距離為x米的相鄰兩橋墩之間的橋面工程費(fèi)用為SKIPIF1<0萬(wàn)元,假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其它因素,記余下工程的費(fèi)用為y萬(wàn)元.(1)試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;(2)需新建多少個(gè)橋墩才能使y最?。坎⑶蟪銎渥钚≈?參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0【答案】(1)SKIPIF1<0(2)需新建SKIPIF1<0個(gè)橋墩才能使y最小,最小值為SKIPIF1<0萬(wàn)元.【分析】(1)利用題中的已知條件設(shè)出需要建設(shè)橋墩的個(gè)數(shù),進(jìn)而表示出工程的費(fèi)用即可;(2)利用(1)的結(jié)果,再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可求出最值.(1)由已知兩端的橋墩相距1200米,且相鄰兩橋墩相距x米,故需要建橋墩SKIPIF1<0個(gè),則SKIPIF1<0SKIPIF1<0SKIPIF1<0所以y關(guān)于x的函數(shù)關(guān)系式為SKIPIF1<0,SKIPIF1<0(2)由(1)知SKIPIF1<0SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞增;所以當(dāng)SKIPIF1<0時(shí),y有最小值,且SKIPIF1<0又SKIPIF1<0SKIPIF1<0(萬(wàn)元)所以需新建SKIPIF1<0個(gè)橋墩才能使y最小,最小值為SKIPIF1<0萬(wàn)元.題型二:數(shù)形結(jié)合思想一、單選題1.(2022·全國(guó)·高三專題練習(xí))如圖所示,已知直線SKIPIF1<0與曲線SKIPIF1<0相切于兩點(diǎn),函數(shù)SKIPIF1<0,則對(duì)函數(shù)SKIPIF1<0描述正確的是(

)A.有極小值點(diǎn),沒(méi)有極大值點(diǎn) B.有極大值點(diǎn),沒(méi)有極小值點(diǎn)C.至少有兩個(gè)極小值點(diǎn)和一個(gè)極大值點(diǎn) D.至少有一個(gè)極小值點(diǎn)和兩個(gè)極大值點(diǎn)【答案】C【分析】由題設(shè)SKIPIF1<0,令SKIPIF1<0與SKIPIF1<0切點(diǎn)橫坐標(biāo)為SKIPIF1<0且SKIPIF1<0,由圖存在SKIPIF1<0使SKIPIF1<0,則SKIPIF1<0有三個(gè)不同零點(diǎn)SKIPIF1<0,結(jié)合圖象判斷SKIPIF1<0的符號(hào),進(jìn)而確定SKIPIF1<0單調(diào)性,即可確定答案.【詳解】由題設(shè),SKIPIF1<0,則SKIPIF1<0,又直線SKIPIF1<0與曲線SKIPIF1<0相切于兩點(diǎn)且橫坐標(biāo)為SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0的兩個(gè)零點(diǎn)為SKIPIF1<0,由圖知:存在SKIPIF1<0使SKIPIF1<0,綜上,SKIPIF1<0有三個(gè)不同零點(diǎn)SKIPIF1<0,由圖:SKIPIF1<0上SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增,SKIPIF1<0上遞減,SKIPIF1<0上遞增.故SKIPIF1<0至少有兩個(gè)極小值點(diǎn)和一個(gè)極大值點(diǎn).故選:C.2.(2021·河南·西南大學(xué)附中高三期中(文))已知函數(shù)SKIPIF1<0,若存在實(shí)數(shù)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由正弦函數(shù)的性質(zhì)可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)得到函數(shù)SKIPIF1<0的單調(diào)性和極值,求出SKIPIF1<0在SKIPIF1<0時(shí)的值域,從而得到SKIPIF1<0的取值范圍.【詳解】由正弦函數(shù)的性質(zhì)可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,又SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的取值范圍為SKIPIF1<0,故選:D.3.(2022·全國(guó)·高三專題練習(xí))如圖,函數(shù)SKIPIF1<0的圖象SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作其切線SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作其切線SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作其切線SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0的取值(

)A.與SKIPIF1<0有關(guān),且存在最大值 B.與SKIPIF1<0有關(guān),且存在最小值C.與SKIPIF1<0有關(guān),但無(wú)最值 D.與SKIPIF1<0無(wú)關(guān),為定值【答案】D【分析】先證明一個(gè)結(jié)論:函數(shù)SKIPIF1<0的圖象SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,SKIPIF1<0.過(guò)點(diǎn)SKIPIF1<0作其切線SKIPIF1<0交于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于另兩個(gè)點(diǎn)SKIPIF1<0,則SKIPIF1<0;利用該結(jié)論即可求出SKIPIF1<0的橫坐標(biāo)關(guān)于SKIPIF1<0的表達(dá)式,進(jìn)而求出直線SKIPIF1<0與SKIPIF1<0的方程,聯(lián)立直線SKIPIF1<0與SKIPIF1<0的方程,即可求出點(diǎn)SKIPIF1<0的橫坐標(biāo),再根據(jù)SKIPIF1<0,即可求出結(jié)果.【詳解】先證函數(shù)SKIPIF1<0的圖象SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,SKIPIF1<0.過(guò)點(diǎn)SKIPIF1<0作其切線SKIPIF1<0交于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于另兩個(gè)點(diǎn)SKIPIF1<0,則SKIPIF1<0.證明:設(shè)過(guò)點(diǎn)SKIPIF1<0的直線為SKIPIF1<0,聯(lián)立得:SKIPIF1<0,得方程SKIPIF1<0則方程SKIPIF1<0必有一根SKIPIF1<0,于是方程SKIPIF1<0可改寫(xiě)為SKIPIF1<0,其中SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0相切于SKIPIF1<0點(diǎn)時(shí),方程SKIPIF1<0有重根SKIPIF1<0,韋達(dá)定理知SKIPIF1<0;當(dāng)SKIPIF1<0與相交SKIPIF1<0于SKIPIF1<0點(diǎn)時(shí),方程SKIPIF1<0有另兩個(gè)根SKIPIF1<0,韋達(dá)定理知SKIPIF1<0.故SKIPIF1<0.由于函數(shù)SKIPIF1<0的圖象SKIPIF1<0關(guān)于原點(diǎn)SKIPIF1<0對(duì)稱,設(shè)SKIPIF1<0,連結(jié)SKIPIF1<0,交SKIPIF1<0于另一點(diǎn)SKIPIF1<0,由對(duì)稱性,則SKIPIF1<0,由上述結(jié)論,則SKIPIF1<0,所以SKIPIF1<0;設(shè)SKIPIF1<0,連結(jié)SKIPIF1<0交SKIPIF1<0于另一點(diǎn)SKIPIF1<0由對(duì)稱性,則SKIPIF1<0,由上述結(jié)論,則SKIPIF1<0,所以SKIPIF1<0.于是直線SKIPIF1<0為SKIPIF1<0,直線SKIPIF1<0為SKIPIF1<0,聯(lián)立得:SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的取值與SKIPIF1<0無(wú)關(guān),為定值SKIPIF1<0.故選:D.二、多選題4.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,下列說(shuō)法正確的有(

)A.函數(shù)SKIPIF1<0是周期函數(shù) B.函數(shù)SKIPIF1<0有唯一零點(diǎn)C.函數(shù)SKIPIF1<0有無(wú)數(shù)個(gè)極值點(diǎn) D.函數(shù)SKIPIF1<0在SKIPIF1<0上不是單調(diào)函數(shù)【答案】CD【分析】根據(jù)SKIPIF1<0不是周期函數(shù),從而可判斷選項(xiàng)A錯(cuò)誤;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作出SKIPIF1<0與SKIPIF1<0的圖象,由圖象可判斷選項(xiàng)B;作出SKIPIF1<0與SKIPIF1<0的圖象,由圖可判斷選項(xiàng)C;通過(guò)圖象可判斷SKIPIF1<0在SKIPIF1<0不單調(diào),從而可判斷選項(xiàng)D.【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0不是周期函數(shù),則SKIPIF1<0不是周期函數(shù),A錯(cuò);令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,作出SKIPIF1<0與SKIPIF1<0的圖象,由圖可知,SKIPIF1<0與SKIPIF1<0的圖象至少有兩個(gè)交點(diǎn),SKIPIF1<0至少有兩個(gè)零點(diǎn),SKIPIF1<0至少有兩個(gè)零點(diǎn),B錯(cuò)誤;作出SKIPIF1<0與SKIPIF1<0的圖象,由圖可知,SKIPIF1<0有無(wú)數(shù)個(gè)零點(diǎn)SKIPIF1<0有無(wú)數(shù)個(gè)極值點(diǎn),即SKIPIF1<0有無(wú)數(shù)個(gè)極值點(diǎn),C正確;因?yàn)镾KIPIF1<0在SKIPIF1<0有零點(diǎn),所以SKIPIF1<0在SKIPIF1<0不單調(diào),SKIPIF1<0在SKIPIF1<0不單調(diào),D正確;故選:CD.三、雙空題5.(2022·湖南·長(zhǎng)沙一中高三階段練習(xí))已知函數(shù)SKIPIF1<0,則方程SKIPIF1<0的根為_(kāi)_______.若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.【答案】

SKIPIF1<0或2;

SKIPIF1<0.【分析】(1)當(dāng)SKIPIF1<0時(shí),運(yùn)用導(dǎo)數(shù)求得函數(shù)單調(diào)區(qū)間,可得SKIPIF1<0,可得一根,當(dāng)SKIPIF1<0時(shí),直接求解可得.(2)先運(yùn)用導(dǎo)數(shù)求得函數(shù)單調(diào)區(qū)間,并作出函數(shù)的圖象,再根據(jù)圖象列出函數(shù)有3個(gè)零點(diǎn)所需要的條件,即可求得結(jié)果.【詳解】解:(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,并且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有唯一根SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0(舍去)或2,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的根為2,綜上,SKIPIF1<0根為SKIPIF1<0或2;(2)因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),由(1)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,因?yàn)楫?dāng)SKIPIF1<0時(shí),則有SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,由圖象得,要使函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),且SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0故答案是:SKIPIF1<0或2;SKIPIF1<0.6.(2022·廣東·金山中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的最小值為_(kāi)_______;若關(guān)于SKIPIF1<0的方程SKIPIF1<0有四個(gè)不同的實(shí)根,則實(shí)數(shù)SKIPIF1<0的取值范圍是________.【答案】

SKIPIF1<0

SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)求出函數(shù)在每段上的最小值,比較大小即可;求出過(guò)點(diǎn)SKIPIF1<0且與SKIPIF1<0相切的直線的斜率,再由數(shù)形結(jié)合可得出SKIPIF1<0與SKIPIF1<0有4個(gè)交點(diǎn)時(shí)的斜率取值范圍,即可得解.【詳解】令SKIPIF1<0,SKIPIF1<0表示過(guò)定點(diǎn)SKIPIF1<0,斜率為SKIPIF1<0的動(dòng)直線,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在同一坐標(biāo)系內(nèi)作出函數(shù)SKIPIF1<0圖象與直線SKIPIF1<0,如圖所示,關(guān)于SKIPIF1<0的方程SKIPIF1<0有四個(gè)不同的實(shí)根,等價(jià)于函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有四個(gè)不同的交點(diǎn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處切線斜率為SKIPIF1<0,該切線過(guò)點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0滿足SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的圖象過(guò)點(diǎn)SKIPIF1<0的切線斜SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,該切線過(guò)點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的圖象過(guò)點(diǎn)SKIPIF1<0的切線斜率為2,由函數(shù)圖象知,當(dāng)動(dòng)直線SKIPIF1<0在直線SKIPIF1<0與SKIPIF1<0所夾不含SKIPIF1<0軸的對(duì)頂角區(qū)域內(nèi)轉(zhuǎn)動(dòng)(不含邊界直線)時(shí),函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有四個(gè)不同的交點(diǎn),此時(shí)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0四、填空題7.(2022·河南·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0在區(qū)間SKIPIF1<0上恰有四個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】將問(wèn)題轉(zhuǎn)化為SKIPIF1<0在區(qū)間SKIPIF1<0上恰有四個(gè)不同的實(shí)數(shù)根,進(jìn)而設(shè)SKIPIF1<0,然后先通過(guò)導(dǎo)數(shù)的方法探討函數(shù)SKIPIF1<0的圖象和性質(zhì),再討論關(guān)于t的方程SKIPIF1<0的根的分布,最后求得答案.【詳解】問(wèn)題SKIPIF1<0SKIPIF1<0即SKIPIF1<0在區(qū)間SKIPIF1<0上恰有四個(gè)不同的實(shí)數(shù)根.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0.如示意圖:

由圖可知,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有2個(gè)零點(diǎn),于是問(wèn)題SKIPIF1<0關(guān)于t的的方程SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上有2個(gè)不等實(shí)根.設(shè)SKIPIF1<0的兩個(gè)零點(diǎn)為SKIPIF1<0,易知SKIPIF1<0.于是,SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題較難,首先直接處理較為麻煩,因此對(duì)原方程進(jìn)行恒等變形,進(jìn)而采用“換元法”降低試題的難度.另外,我們經(jīng)常采用“數(shù)形結(jié)合法”進(jìn)行輔助解題,這樣更加形象和直觀.題型三:分類與整合思想一、多選題1.(2022·重慶南開(kāi)中學(xué)模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,其中常數(shù)SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的有(

)A.函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0B.當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)C.不存在實(shí)數(shù)SKIPIF1<0和m,使得函數(shù)SKIPIF1<0恰好只有一個(gè)極值點(diǎn)D.若SKIPIF1<0,則“SKIPIF1<0”是“函數(shù)SKIPIF1<0是增函數(shù)”的充分不必要條件【答案】BC【分析】A判斷SKIPIF1<0時(shí)的定義域情況即可;B利用導(dǎo)數(shù)研究SKIPIF1<0的單調(diào)性,判斷是否有兩個(gè)變號(hào)零點(diǎn)即可;C、D對(duì)SKIPIF1<0求導(dǎo),構(gòu)造SKIPIF1<0結(jié)合二次函數(shù)性質(zhì)討論SKIPIF1<0和m,應(yīng)用零點(diǎn)存在性定理判斷SKIPIF1<0變號(hào)零點(diǎn)的個(gè)數(shù),進(jìn)而判斷SKIPIF1<0極值點(diǎn)個(gè)數(shù)及單調(diào)性.【詳解】A:當(dāng)SKIPIF1<0時(shí)定義域?yàn)镾KIPIF1<0,錯(cuò)誤;B:SKIPIF1<0且定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上各有一個(gè)變號(hào)零點(diǎn),則SKIPIF1<0有兩個(gè)極值點(diǎn),正確;C:SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則圖象開(kāi)口向上,對(duì)稱軸SKIPIF1<0且SKIPIF1<0,要使SKIPIF1<0有極值點(diǎn),SKIPIF1<0必有變號(hào)零點(diǎn),則SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0定義域?yàn)镾KIPIF1<0,又SKIPIF1<0,此時(shí)SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,即SKIPIF1<0,無(wú)極值點(diǎn);此時(shí)SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0遞減,SKIPIF1<0遞增,故SKIPIF1<0、SKIPIF1<0各有一個(gè)零點(diǎn),即SKIPIF1<0有兩個(gè)變號(hào)零點(diǎn);當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,即SKIPIF1<0,無(wú)極值點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0SKIPIF1<0上遞減,SKIPIF1<0遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0趨向正無(wú)窮SKIPIF1<0趨于正無(wú)窮,故SKIPIF1<0在SKIPIF1<0、SKIPIF1<0各有一個(gè)變號(hào)零點(diǎn),即SKIPIF1<0有兩個(gè)變號(hào)零點(diǎn);此時(shí)SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0遞增,又SKIPIF1<0,即SKIPIF1<0,無(wú)極值點(diǎn);綜上,不存在實(shí)數(shù)SKIPIF1<0和m,使得函數(shù)SKIPIF1<0恰好只有一個(gè)極值點(diǎn),正確;D:結(jié)合C分析:當(dāng)SKIPIF1<0且SKIPIF1<0時(shí)有SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒正,即SKIPIF1<0,此時(shí)SKIPIF1<0是增函數(shù);當(dāng)SKIPIF1<0且SKIPIF1<0時(shí)有SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0,SKIPIF1<0各有一個(gè)零點(diǎn),易得SKIPIF1<0有兩個(gè)變號(hào)零點(diǎn),此時(shí)SKIPIF1<0不單調(diào),命題的充分性不成立,錯(cuò)誤.故選:BC【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:C、D首先對(duì)SKIPIF1<0求導(dǎo),構(gòu)造SKIPIF1<0,結(jié)合二次函數(shù)性質(zhì)討論參數(shù)判斷SKIPIF1<0變號(hào)零點(diǎn)的個(gè)數(shù)及SKIPIF1<0單調(diào)性.二、解答題2.(2022·四川南充·三模(理))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,求證:對(duì)于任意SKIPIF1<0,函數(shù)SKIPIF1<0有唯一零點(diǎn).【分析】(1)求導(dǎo),通過(guò)討論SKIPIF1<0的范圍研究導(dǎo)函數(shù)的符號(hào)變化,進(jìn)而研究函數(shù)的單調(diào)區(qū)間;(2)求導(dǎo),構(gòu)造函數(shù)SKIPIF1<0,再次求導(dǎo)研究.SKIPIF1<0的單調(diào)性,再利用放縮法進(jìn)行轉(zhuǎn)化求證.(1)解:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減;②當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0、SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;綜上所述:①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;③SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞減;④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0、SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增;(2)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.則SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減.所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0存在唯一SKIPIF1<0,使得函數(shù)SKIPIF1<0.所以對(duì)于任意SKIPIF1<0,函數(shù)SKIPIF1<0有唯一零點(diǎn).3.(2022·云南·二模(文))已知e是自然對(duì)數(shù)的底數(shù),SKIPIF1<0,常數(shù)a是實(shí)數(shù).(1)設(shè)SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)SKIPIF1<0,都有SKIPIF1<0,求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)先求出SKIPIF1<0,再求導(dǎo)得到SKIPIF1<0,即可求出切線方程;(2)令SKIPIF1<0,求導(dǎo)后令SKIPIF1<0,通過(guò)SKIPIF1<0得到SKIPIF1<0在SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞增,符合題意,當(dāng)SKIPIF1<0時(shí),說(shuō)明SKIPIF1<0,使SKIPIF1<0,不合題意,即可求解.(1)設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程頭SKIPIF1<0,即SKIPIF1<0.∴曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.∴函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.∴SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論