一天征服傅里葉變換+英文版_第1頁
一天征服傅里葉變換+英文版_第2頁
一天征服傅里葉變換+英文版_第3頁
一天征服傅里葉變換+英文版_第4頁
一天征服傅里葉變換+英文版_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天征服傅里葉變換[英]作者:StephanM.Bernsee轉貼自:internet點擊數(shù):169您要打印的文件是:一天征服傅里葉變換[英]TheDFTaPied:MasteringTheFourierTransforminOneDaybyStephanM.Bernsee,,.1999allrightsreserved*Ifyou'reintosignalprocessing,youwillnodoubtsaythattheheadlineisaverytallclaim.youcan'tlearnallthebellsandwhistlesoftheFouriertransforminonedaywithoutpractisingllydelvingintothemaths.However,thisonlinecoursewillprovideyouwiththebasicknowledgeformworks,whyitworksandwhyitcanbeverysimpletocomprehendwhenwe'reusingproach.Theimportantpart:youwilllearnthebasicsoftheFouriertransformcompletelywithoutondaddingandmultiplyingnumbers!IwilltrytoexplaintheFouriertransforminitspracticalprocessinginnomorethansixparagraphsbelow.Step1:SomesimpleprerequisitesWhatyouneedtounderstandthefollowingparagraphsareessentiallyfourthings:howtoanddividethemandwhatasine,acosineandasinusoidisandhowtheylook.Obviously,ndjustexplainabitthelastone.Youprobablyrememberfromyourdaysatschoolthe'trigonometricresomehowmysteriouslyusedinconjunctionwithtrianglestocalculatethelengthofitssidesiceversa.Wedon'tneedallthesethingshere,wejustneedtoknowhowthetwomostimportants,thesineandcosinelooklike.Thisisquitesimple:theylooklikeverysimplewaveswithstretchouttoinfinitytotheleftandtherightoftheobserver.Asyoucansee,bothwavesareperiodic,whichmeansthatafteracertaintime,theo,bothwaveslookalike,butthecosinewaveappearstostartatitsmaximum,whilethesinepractice,howcanwetellwhetherawaveweobserveatagiventimestartedoutatitsmaximum,on:wecan't.There'snowaytodiscernasinewaveandacosinewaveinpractice,thuswesineorcosinewaveasinusoid,whichisGreekandtranslatestosinus-like.Animportantpropertyy,whichtellsushowmanypeaksandvalleyswecancountinagivenperiodoftime.HighThesinewaveThecosinewave一天征服傅里葉變換[英]頁碼,1/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionandvalleys,lowfrequencymeansfewpeaksandvalleys:Step2:UnderstandingtheFourierTheoremJean-BaptisteJosephFourierwasoneofthosechildrenparentsareeitherproudorashamedghlycomplicatedmathematicaltermsatthemattheageoffourteen.Althoughhedidalotifetime,theprobablymostsignificantthinghediscoveredhadtodowiththeconductionofwithanequationthatdescribedhowtheheatwouldtravelinacertainmedium,andsolvedseriesoftrigonometricfunctions(thesinesandcosineswehavediscussedabove).Basically,atFourierdiscoveredboilsdowntothegeneralrulethateverysignal,howevercomplex,cansinusoidfunctionsthatareindividuallymixed.Anexampleofthis:Whatyouseehereisouroriginalsignal,andhowitcanbeapproximatedbyamixtureofs)thataremixedtogetherinacertainrelationship(a'recipe').Wewilltalkaboutthatrecipemoresinesweusethemoreaccuratelydoestheresultresembleouroriginalwaveform.Inarecontinuous,ie.youcanmeasurethemininfinitelysmallintervalsatanaccuracythatismentequipment,youwouldneedinfinitelymanysinestoperfectlybuildanygivensignal.otlivinginsuchaworld.Rather,wearedealingwithsamplesofsuch'realworld'signalsthatervalsandonlywithfiniteprecision.Thus,wedon'tneedinfinitelymanysines,wejustneedthat'howmuchisalot'lateron.Forthemoment,itisimportantthatyoucanimaginethatrcomputercanbeputtogetherfromsimplesinewaves,aftersomecookingrecipe.Step3:HowmuchisalotLowfrequencysinusoidMiddlefrequencysinusoidHighfrequencysinusoidThisisouroriginalOnesineTwosinesFoursinesSevensinesFourteensines一天征服傅里葉變換[英]頁碼,2/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionAswehaveseen,complexshapedwaveformscanbebuilt什omamixtureofsinewaves.Wemareneededtobuildanygivensignalonourcomputer.Well,ofcourse,thismaybeasfewvidedweknowhowthesignalwearedealingwithismadeup.Inmostcases,wearedealingmighthaveaverycomplexstructure,sowedonotknowinadvancehowmany'partial'wavesInthiscase,itisveryreassuringtoknowthatifwedon'tknowhowmanysinewavesconstituteisanupperlimittohowmanywewillneed.Still,thisleavesuswiththequestionofhowmanyytoapproachthisintuitively:assumewehave1000samplesofasignal.Thesinewavewithmostpeaksandvalleysinit)thatcanbepresenthasalternatingpeaksandvalleysforeverywiththehighestfrequencyhas500peaksand500valleysinour1000samples,witheveryheblackdotsinthefollowingdiagramdenoteoursamples,sothesinewavewiththehighestNowlet'slookhowlowthelowestfrequencysinewavecanbe.Ifwearegivenonlyonesinglewebeabletomeasurepeaksandvalleysofasinewavethatgoesthroughthispoint?Wewavesofdifferentperiodsthatgothroughthispoint.So,asingledatapointisnotenoughtotellusanythingaboutfrequency.Now,ifweweredbethelowestfrequencysinewavethatgoesthroughthesetwopoints?Inthiscase,itisrylowfrequencysinewavethatgoesthroughthetwopoints.Itlookslikethis:Imaginethetwoleftmostpointsbeingtwonailswithastringspannedbetweenthem(thentsasthesinewaveisperiodic,butwereallyonlyneedtheleftmosttwototellitsfrequency).canseeisthestringswingingbackandforthbetweenthetwonails,likeoursinewavedoestwopointstotheleft.Ifwehave1000samples,thetwo'nails'wouldbethefirstandthelastThehighestfrequencysinewaveManysinewavesgothroughonesinglepoint,soonepointdoesn'ttellusaboutfrequencyThelowestfrequencysinewave一天征服傅里葉變換[英]頁碼,3/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversion1andsamplenumber1000.Weknowfromourexperiencewithmusicalinstrumentsthatdownwhenitslengthincreases.Sowewouldexpectthatourlowestsinewavegetslowerurnailsfartheraway什omeachother.Ifwechoose2000samples,forinstance,thelowestsinceour'nails'arenowsamplenumber1andsamplenumber2000.Infact,itwillbetwiceowtwiceasfarawayasinthe1000samples.Thus,ifwehavemoresamples,wecandiscernencysincetheirzerocrossings(our'nails')willmovefartheraway.Thisisveryimportantexplanations.Aswecanalsosee,aftertwo'nails'ourwavestartstorepeatwiththeascendingslope(theentical).Thismeansthatanytwoadjacentnailsembraceexactlyonehalfofthecompletetheronepeakoronevalley,or1/2period.Summarizingwhatwehavejustlearned,weseethattheupperfrequencyofasampledsinebeingapeakandavalleyandthe/owe廠frequencyboundishalfaperiodofthesinewaveberofsampleswearelookingat.Butwait-wouldn'tthismeanthatwhiletheupperfrequencyfrequencywoulddropwhenwehavemoresamples?Exactly!Theresultofthisisthatwewillnwewanttoputtogetherlongersignalsofunknowncontent,sincewestartoutatalowerAllwellandgood,butstillwedon'tknowhowmanyofthesesinewaveswefinallyneed.Asupperfrequencyanypartialsinewavecanhave,wecancalculatehowmanyofthemfitinewehavenailedourlowestpartialsinewavedowntotheleftmostandrightmostsamples,wavesusethesenailsaswell(whyshouldwetreatthemdifferently?Allsinewavesarecreatedsinewaveswerestringsonaguitarattachedtotwofixedpoints.Theycanonlyswingbetweenbreak),justlikeoursinewavesbelow.Thisleadstotherelationshipthatourlowestpartialsecondpartial(2)fitsinwith1period,thethirdpartial(3)fitsinwith11/2okingat.Graphically,thislookslikethis:Nowifwecounthowmanysinewavesfitinour1000samplesthatway,wewillfindthatweesaddedtogethertorepresentthe1000samples.Infact,wewillalwaysfindthatweneeddsamples.Thefirst4partialsinewaves(clicktoenlarge)一天征服傅里葉變換[英]頁碼,4/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionStep4:AboutcookingrecipesInthepreviousparagraphwehaveseenthatanygivensignalonacomputercanbebuiltWehaveconsideredtheirfrequencyandwhatfrequencythelowestandhighestsinewavesonstructanysignalweanalyze.Wehaveseenthatthenumberofsampleswearelookingthelowestpartialsinewavethatisneeded,butwehavenotyetdiscussedhowtheactualoyieldacertainresult.Tomakeupanygivensignalbyaddingsinewaves,weneedtomeasurethem.Asamatteroffact,frequencyisnottheonlythingweneedtoknow.Wealsoneednewaves,ie.howmuchofeachsinewaveweneedtomixtogethertoreproduceourinputeightofthepeaksofasinewave,ie.thedistancebetweenthepeakandourzeroline.Thederitwillsoundwhenwelistentoit.So,ifyouhaveasignalthathaslotsofbassinityouemustbeagreaterportionoflowerfrequencysinewavesinthemixthantherearehighernerally,thelowfrequencysinewavesinabassysoundwillhaveahigheramplitudethantheInouranalysis,wewillneedtodeterminetheamplitudeofeachpartialsinewavetocompleteStep5:AboutapplesandorangesIfyouarestillwithme,wehavealmostcompletedourjourneytowardstheFouriertransform.ysinewavesweneed,thatthisnumberdependsonthenumberofsampleswearelookingupperfrequencyboundaryandthatwesomehowneedtodeterminetheamplitudeofthepleteourrecipe.We'restillnotclear,however,onhowwecandeterminetheactualrecipewewouldsaythatwecouldfindtheamplitudesofthesinewavessomehowbycomparingytothesampleswehavemeasuredandfindouthow'equal'theyare.Iftheyareexactlyavemustbepresentatthesameamplitude,ifwefindoursignaltonotmatchourreferencexpectthisfrequencynottobepresent.Still,howcouldweeffectivelycompareaknownsineal?Fortunately,DSPershavealreadyfiguredouthowtodothisforyou.Infact,thisisasnumbers-wetakethe'reference'sinewaveofknownfrequencyandunitamplitude(thistudeof1,whichisexactlywhatwegetbackfromtheSin()functiononourpocketcalculatoryitwithoursignalsamples.Afteraddingtheresultofthemultiplicationtogether,wewilltialsinewaveatthefrequencywearelookingat.Toillustratethis,here'sasimpleCcodeListing1.1:ThedirectrealizationoftheDiscreteSineTransform(DST):#defineM_PI3.14159265358979323846longbin,k;doublearg;for(bin=0;bin<transformLength;bin++)(transformData[bin]=0.;for(k=0;k<transformLength;k++)(arg=(float)bin*M_PI*(float)k/(float)transformLength;transformData[bin]+=inputData[k]*sin(arg);一天征服傅里葉變換[英]頁碼,5/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionThiscodesegmenttransformsourmeasuredsamplepointsthatareStoredininputData[0...transformLengthamplitudesofitspartialsinewavestransformData[0...transformLength-1]-Accordingtocommonterminology,ncystepsofourreferencesinewavebins,whichmeansthattheycanbethoughtofasbeingtheamplitudeofanyofthepartialwavesweevaluate.TheDiscreteSineTransform(DST)sumeswehavenoideawhatoursignallookslike,otherwisewecoulduseamoreefficientmplitudesofthepartialsinewaves(ifwe,forexample,knowbeforehandthatoursignalisequencywecoulddirectlycheckforitsamplitudewithoutcalculatingthewholerangeofsinehfordoingthisbasedontheFouriertheorycanbefoundintheliteratureunderthenameForthoseofyouwhoinsistonanexplanationforwhywecalculatethesinetransformthatachtowhywemultiplywithasinewaveofknownfrequency,imaginethatthiscorrespondsalworldhappenswhena'resonance'atagivenfrequencytakesplaceinasystem.Theatorthatgetsexcitedbyourinputwaveform.Iftheinputhasapartialatthefrequencywe'reetheamplitudeoftheresonancewiththereferencesinewave.Sinceourreferencewaveisadirectmeasureoftheactualamplitudeofthepartialatthatfrequency.Sincearesonatorr,thetransformcan(admittedlyundersomewhatrelaxedconditions)beseenasahavingnarrowbandpassfiltersthatarecenteredaroundthefrequencieswe'reevaluating.ThishelpseFouriertransformprovidesanefficienttoolforperformingfilteringofsignals.Justforthesakeofcompleteness:ofcourse,theaboveroutineisinvertible,oursignalcanricalprecision)beperfectlyreconstructedwhenweknowitspartialsinewaves,bysimplyisisleftasanexercisetothereader.ThesameroutinecanbechangedtoworkwithcosineesimplyneedtochangetheSin(arg)termtoCos(arg)toobtainthedirectrealizationoftheDiscreteT).Now,aswehavediscussedintheveryfirstparagraphofthisarticle,inpracticewehavenoinus-likefunctionassinewaveorcosinewave.Insteadwearealwaysmeasuringransformareofnogreatusewhenweareapplyingtheminpractice,exceptforsomespecialionwhereeachimagemighthavefeaturesthatarewellmodelledbyacosineorsinebasisofthesamecolorthatarewellrepresentedbythecosinebasisfunction).Asinusoidisabitrcosinewaveinthatitcanstartatanarbitrarypositioninitsperiod.Werememberthattheatzero,whilethecosinewavestartsoutatone.Whenwetakethesinewaveasreference,1/4thlaterinitsperiod.Itiscommontomeasurethisoffsetindegreeorradiansconjunctionwithtrigonometricfunctions.Onecompleteperiodequals360°(pron.degree)hpipronouncedlikethewordpie.isaGreeksymbolforthenumber3.14159265358979323846...nificanceintrigonometry).Thecosinewavethushasanoffsetof90Tor/2.Thisoffsetisd,solookingatourcosinewaveweseethatitisasinusoidwithaphaseoffsetof90Sowhat'sthisphasebusinessallabout.Aswecan'trestrictoursignaltostartoutatzeroe(sincewearejustobservingasignalwhichmightbebeyondourcontrol)itisofinterest}}一天征服傅里葉變換[英]頁碼,6/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionplitudeandphasetouniquelydescribeitatanyonetimeinstant.Withthesineorcosinetransform,erophaseor90°phaseandanysinusoidthathasanarbitraryphasewillcauseadjacenteaks(sincetheytryto'help'theanalysistoforce-fitthemeasuredsignaltoasumofzeroabitliketryingtofitaroundstoneintoasquarehole:youneedsmallerroundstonestofilldevenmoreevensmallerstonestofilloutthespacethatisstillleftempty,andsoon.Sohatisgeneralinthatitcandealwithsignalsthatarebuiltofsinusoidsofarbitraryphase.Step6:TheDiscreteFouriertransform.ThestepfromthesinetransformtotheFouriertransformissimple,makingitinawaymoreenusingasinewaveforeachfrequencywemeasureinthesinetransform,weusebothaFouriertransform.Thatis,foranyfrequencywearelookingatwe'compare'(or'resonate')hacosineandasinewaveofthesamefrequency.Ifoursignallooksmuchlikeasinewave,formwillhavealargeamplitude.Ifitlookslikeacosinewave,thecosinepartofourtransformde.Ifitlooksliketheoppositeofasinewave,thatis,itstartsoutatzerobutdropstoeportionwillhavealargenegativeamplitude.Itcanbeshownthatthe+and-signhasecanrepresentanysinusoidatthegivenfrequency?.We'restillleftwiththeproblemofhowtogetsomethingusefuloutoftheFourierTransform.efitoftheFouriertransformovertheSineandCosinetransformisthatweareworkingwithn'tseeanysinusoidsyet,therearestillonlysinesandcosines.Well,thisrequiresanadditionalListing1.2:ThedirectrealizationoftheDiscreteFourierTransform#defineM_PI3.14159265358979323846longbin,k;doublearg,sign=-1.;/*sign=-1->FFT,1->iFFT*/for(bin=0;bin<=transformLength/2;bin++)(cosPart[bin]=(sinPart[bin]=0.);for(k=0;k<transformLength;k++)(arg=2.*(float)bin*M_PI*(float)k/(float)transformLength;sinPart[bin]+=inputData[k]*sign*sin(arg);cosPart[bin]+=inputData[k]*cos(arg);}}一天征服傅里葉變換[英]頁碼,7/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionAfterrunningthecodefragmentshowninListing1.3onourDFToutput,weendupwithanalasasumofsinusoidwaves.Thek-thsinusoidisdescribedbyfrequency[k],magnitude[k]periodsperseconds),dB(Decibel)and°(Degree).Pleasenotethatafterthepoststhesineandcosinepartsintoasinglesinusoid,wenametheamplitudeofthekitwillnowalwaysbeapositivevalue.Wecouldsaythatanamplitudeof-1.0correspondshaseofeither+or-180°.Intheliterature,thearraymagnitude[]iscalledtheMagnitudeSpectruml,thearrayphase[]iscalledthePhaseSpectrumofthemeasuredsignalatthetimewhereAsareferenceformeasuringthebinmagnitudeindecibels,ourinputwaveisexpectedtoge[-1.0,1.0),whichcorrespondstoamagnitudeof0dBdigitalfullscale(DFS).Asaninterestinglisting1.3can,forexample,beusedtowriteaspectrumanalyzerbasedontheDiscreteFourierConclusionAswehaveseen,theFouriertransformandits'relatives',thediscretesineandcosinetransformdecomposeasignalintoabunchofpartialwaves.Theseareeithersineorcosinewaves,ormbinationofsineandcosinewaves).Theadvantageofusingboththesineandcosinewavertransformisthatwearethusabletointroducetheconceptofphasewhichmakesthetransformecanuseittoefficientlyandclearlyanalyzesinusoidsthatareneitherapuresineorcosinegnalsaswell.TheFouriertransformisindependentofthesignalunderexaminationinthatitrequirestheomatterifthesignalweareanalyzingisonesinglesinusoidorsomethingelsemorecomplicated.theDiscreteFouriertransformiscalledanonparametrictransform,meaningthatitisnotgent'analysisofasignalisneeded(inthecasewhereweareexaminingasignalthatweknoweferjustgettinginformationaboutitsphase,frequencyandmagnitudeinsteadofabunchListing1.3:Gettingsinusoidfrequency,magnitudeandphase什omtheDiscreteFourier#defineM_PI3.14159265358979323846longbin;for(bin=0;bin<=transformLength/2;bin++)(/*frequency*/frequency[bin]=(float)bin*sampleRate/(float)transformLength;/*magnitude*/magnitude[bin]=20.*log10(2.*sqrt(sinPart[bin]*sinPart[bin]+cosPart[bin]*cosPart[bin])//*phase*/phase[bin]=180.*atan2(sinPart[bin],cosPart[bin])/M_PI-90.;}一天征服傅里葉變換[英]頁碼,8/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversionmepredefinedfrequencies).Wenowalsoknowthatweareevaluatingourinputsignalatafixedfrequencygrid(ourdowiththeactualfrequenciespresentinourinputsignal.Sincewechooseourreferencesineaccordingtotastewithregardtotheirfrequency,thegridweimposeonouranalysisisartificial.mediatelyclearthatonewilleasilyencounterascenariowherethemeasuredsignal'sfrequenciesenthefrequenciesofourtransformbins.Consequently,asinusoidthathasafrequencythatfrequency'bins'willnotbewellrepresentedinourtransform.Adjacentbinsthatsurroundourinputwavewilltryto'correct'thedeviationinfrequencyandthustheenergyoftheinputseveralneighbouringbins.ThisisalsothemainreasonwhytheFouriertransformwillnotrnwithitsfundamentalandharmonics(andthisisalsowhywecallthesineandcosinewavess,orovertones).Simplyspeaking,withoutfurtherpost-processing,theDFTislittlemorethanabankofnarrow,passfilters('channels')withadditionalphaseinformationforeachchannel.Itisusefulforgandapplyingsomeotherneattricks(changingthepitchofasignalwithoutchangingitsinadifferentarticleonDSP),butitrequiresadditionalpostprocessingforbeseenasaspecialcaseofafamilyoftransformsthatusebasisfunctionsotherthantheingtheconceptinthisdirectionisbeyondthescopeofthisarticle.Finally,itisimportanttomentionthatthereisamoreefficientimplementationoftheDFT,eFastFourierTransform(FFT)whichwasoriginallyconceivedbyCooleyandTukeyin1969theworkofGaussandothers).TheFFTisjustanefficientalgorithmthatcalculatestheDFTforwardapproachgivenabove,itisotherwiseidenticalwithregardtoitsresults.However,ementedintheCooley/Tukeyalgorithmitrequiresthatthetransformlengthbeapoweroftableconstraintformostapplications.TheavailableliteratureondifferentFFTimplementationsythattherearemanydifferentFFTimplementations,someofwhichdonothavethepowericalFFT.AnimplementationoftheFFTisgivenbytheroutin§mbFft()inListing1.4below.Listing1.4:TheDiscreteFastFourierTransform(FFT):#defineM_PI3.14159265358979323846voidsmbFft(float*fftBuffer,longfftFrameSize,longsign)/*FFTroutine,(C)1996S.M.Bernsee.Sign=-1isFFT,1isiFFT(inverse)FillsfftBuffer[0...2*fftFrameSize-1]withtheFouriertransformofthetimedomaindatainfftBuffer[0...2*fftFrameSize-1].TheFFTarraytakesandreturnsthecosineandsinepartsinaninterleavedmanner,ie.fftBuffer[0]=cosPart[0],fftBuffer[1]=sinPart[0],asf.fftFrameSizemustbeapowerof2.Itexpectsacomplexinputsignal(seefootnote2),ie.whenworkingwith'common'audiosignalsourinputsignalhastobepassedas{in[0],0.,in一天征服傅里葉變換[英]頁碼,9/11/Article_Print.asp?ArticleID=6192004-10-18PDFcreatedwithpdfFactorytrialversion[1],0.,in[2],0.,...}asf.Inthatcase,thetransformofthefrequenciesofinterestisinfftBuffer[0...fftFrameSize].*/{floatwr,wi,arg,*p1,*p2,temp;floattr,ti,ur,ui,*p1r,*p1i,*p2r,*p2i;longi,bitm,j,le,le2,k;for(i=2;i<2*f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論