2023學年天津河北區(qū)高三下學期第一次聯考數學試卷(含解析)_第1頁
2023學年天津河北區(qū)高三下學期第一次聯考數學試卷(含解析)_第2頁
2023學年天津河北區(qū)高三下學期第一次聯考數學試卷(含解析)_第3頁
2023學年天津河北區(qū)高三下學期第一次聯考數學試卷(含解析)_第4頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內,復數對應的點的坐標為()A. B. C. D.2.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且3.已知向量與的夾角為,,,則()A. B.0 C.0或 D.4.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.5.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④6.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.7.在直角梯形中,,,,,點為上一點,且,當的值最大時,()A. B.2 C. D.8.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件9.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直10.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產生1到4之間(含1和4)取整數值的隨機數,分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數為一組,表示摸球三次的結果,經隨機模擬產生了以下20組隨機數:141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.12.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.14.展開式的第5項的系數為_____.15.平面向量與的夾角為,,,則__________.16.的展開式中二項式系數最大的項的系數為_________(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.18.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.19.(12分)已知等比數列是遞增數列,且.(1)求數列的通項公式;(2)若,求數列的前項和.20.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.21.(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數就會增加.下表是某出租車公司從出租車的訂單數據中抽取的5天的日平均氣溫(單位:℃)與網上預約出租車訂單數(單位:份);日平均氣溫(℃)642網上預約訂單數100135150185210(1)經數據分析,一天內平均氣溫與該出租車公司網約訂單數(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數;(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數據當成真實的數據,根據表格數據,則從這5天中任意選取2天,求恰有1天網約訂單數不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:22.(10分)設函數()的最小值為.(1)求的值;(2)若,,為正實數,且,證明:.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】

利用復數的運算法則、幾何意義即可得出.【題目詳解】解:復數i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C【答案點睛】本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.2、B【答案解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【題目詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【答案點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.3、B【答案解析】

由數量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【題目詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【答案點睛】本題主要考查向量數量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.4、D【答案解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.5、D【答案解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【題目詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【答案點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.6、B【答案解析】

利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【題目詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.【答案點睛】本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數在處有意義時,的情況.7、B【答案解析】

由題,可求出,所以,根據共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數求出的最大值,即可求出.【題目詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【答案點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數求最值,考查轉化思想和解題能力.8、A【答案解析】

根據對數的運算分別從充分性和必要性去證明即可.【題目詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【答案點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.9、D【答案解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【題目詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【答案點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.10、A【答案解析】

設,由得:,由復數相等可得的值,進而求出,即可得解.【題目詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【答案點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于??碱}.11、A【答案解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數比20即可得解.【題目詳解】由題意可知當1,2同時出現時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【答案點睛】本題考查了簡單隨機抽樣中隨機數的應用和古典概型概率的計算,屬于基礎題.12、A【答案解析】

由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【題目詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【答案點睛】考查集合并集運算,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【題目詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.【答案點睛】本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.14、70【答案解析】

根據二項式定理的通項公式,可得結果.【題目詳解】由題可知:第5項為故第5項的的系數為故答案為:70.【答案點睛】本題考查的是二項式定理,屬基礎題。15、【答案解析】

由平面向量模的計算公式,直接計算即可.【題目詳解】因為平面向量與的夾角為,所以,所以;故答案為【答案點睛】本題主要考查平面向量模的計算,只需先求出向量的數量積,進而即可求出結果,屬于基礎題型.16、5670【答案解析】

根據二項式展開的通項,可得二項式系數的最大項,可求得其系數.【題目詳解】二項展開式一共有項,所以由二項式系數的性質可知二項式系數最大的項為第5項,系數為.故答案為:5670【答案點睛】本題考查了二項式定理展開式的應用,由通項公式求二項式系數,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1(2)1【答案解析】分析:(1)當時可得,可得.(2)先得到關系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數的有關運算,解題時要注意所給出的的定義,并結合組合數公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現錯誤.18、(1);(2)①證明見解析;②能,.【答案解析】

(1)根據拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出切線的方程,解方程組求出點的坐標.設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【題目詳解】(1)因為,所以,即拋物線C的方程是.(2)①證明:由得,.設,,則直線PA的方程為(ⅰ),則直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設點,則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.【答案點睛】本題考查拋物線的方程,考查直線和拋物線的位置關系,屬于難題.19、(1)(2)【答案解析】

(1)先利用等比數列的性質,可分別求出的值,從而可求出數列的通項公式;(2)利用錯位相減求和法可求出數列的前項和.【題目詳解】解:(1)由是遞增等比數列,,聯立,解得或,因為數列是遞增數列,所以只有符合題意,則,結合可得,∴數列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【答案點睛】本題考查了等比數列的性質,考查了等比數列的通項公式,考查了利用錯位相減法求數列的前項和.20、(1)見解析;(2)【答案解析】

(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點E為中點;(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數量積,求解二面角P﹣AE﹣D的余弦值.【題目詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點E為PC中點.法二:建立如圖所示的空間直角坐標系D-XYZ,由題意知PD=CD=1,,設,,,由,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論