名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六 第2講 數(shù)列的遞推關(guān)系與求和_第1頁(yè)
名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六 第2講 數(shù)列的遞推關(guān)系與求和_第2頁(yè)
名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六 第2講 數(shù)列的遞推關(guān)系與求和_第3頁(yè)
名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六 第2講 數(shù)列的遞推關(guān)系與求和_第4頁(yè)
名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六 第2講 數(shù)列的遞推關(guān)系與求和_第5頁(yè)
已閱讀5頁(yè),還剩75頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

名師講壇高考高三數(shù)學(xué)二輪專題復(fù)習(xí)課件名師講壇高考高三數(shù)學(xué)二輪專題復(fù)習(xí)課件專題六

數(shù)列

第2講數(shù)列的遞推關(guān)系與求和專題六數(shù)列回歸教材欄目導(dǎo)航舉題固法即時(shí)評(píng)價(jià)回歸教材欄目導(dǎo)航舉題固法即時(shí)評(píng)價(jià)回歸教材回歸教材名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和5.(必修5P69習(xí)題2改編)已知數(shù)列{an}的首項(xiàng)a1=1,且滿足a2n+1=2a2n-1與a2n=a2n-1+1,那么S20=________.【解析】由數(shù)列{an}的首項(xiàng)a1=1,且滿足a2n+1=2a2n-1,可得數(shù)列{a2n-1}為等比數(shù)列,可得a2n-1=2n-1,所以a2n=a2n-1+1=2n-1+1,所以a2n-1+a2n=2n+1,則S20=(a1+a2)+(a3+a4)+…+(a19+a20)=20565.(必修5P69習(xí)題2改編)已知數(shù)列{an}的首項(xiàng)a1=舉題固法舉題固法名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和即(n-1)an+1-nan+a1=0,所以nan+2-(n+1)an+1+a1=0,兩式相減,得2an+1=an+an+2,所以數(shù)列{an}為等差數(shù)列.即(n-1)an+1-nan+a1=0,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和因?yàn)?9=512,且m≥3,所以2≤m-1≤9,又因?yàn)?16=4×129=4×3×43,且2m-1+1為奇數(shù),所以m=8,k=340.因?yàn)?9=512,且m≥3,所以2≤m-1≤9,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和當(dāng)n≥2時(shí),cn+1<cn,即{cn}在n≥2且n∈N*上單調(diào)遞減,故c1=c2>c3>c4>c5>…,假設(shè)存在三項(xiàng)cs,cp,cr成等差數(shù)列,其中s,p,r∈N*,由于c1=c2>c3>c4>c5>….不妨設(shè)s<p<r,則2cp=cs+cr(*),當(dāng)n≥2時(shí),cn+1<cn,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和當(dāng)p=2時(shí),s=1,即c1=c2=1,由r≥3時(shí),cr<c2=1,此時(shí)c1,c2,cr不構(gòu)成等差數(shù)列,不合題意.當(dāng)p=3時(shí),由題意知s=1或s=2,即cs=1,r≥4,所以r=5.綜上所述,數(shù)列{cn}中存在三項(xiàng)c1,c3,c5或c2,c3,c5構(gòu)成等差數(shù)列.當(dāng)p=2時(shí),s=1,即c1=c2=1,r≥4,所以r=5.名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和當(dāng)n是奇數(shù)時(shí),Sn=a1+a2+a3+a4+…+an-1+an

=a1+(a2+a3)+(a4+a5)+…+(an-1+an)當(dāng)n是奇數(shù)時(shí),即時(shí)評(píng)價(jià)即時(shí)評(píng)價(jià)名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和1111【解答】

因?yàn)閍1=2,且a2,a3,a4+1成等比數(shù)列,所以a1=2,a23=a2(a4+1).又因?yàn)閧an}是正項(xiàng)等差數(shù)列,故d>0,所以(2+2d)2=(2+d)(3+3d),解得d=2或d=-1(舍去),所以數(shù)列{an}的通項(xiàng)公式an=2n.【解答】因?yàn)閍1=2,且a2,a3,a4+1成等比數(shù)列,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考高三數(shù)學(xué)二輪專題復(fù)習(xí)課件名師講壇高考高三數(shù)學(xué)二輪專題復(fù)習(xí)課件專題六

數(shù)列

第2講數(shù)列的遞推關(guān)系與求和專題六數(shù)列回歸教材欄目導(dǎo)航舉題固法即時(shí)評(píng)價(jià)回歸教材欄目導(dǎo)航舉題固法即時(shí)評(píng)價(jià)回歸教材回歸教材名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和5.(必修5P69習(xí)題2改編)已知數(shù)列{an}的首項(xiàng)a1=1,且滿足a2n+1=2a2n-1與a2n=a2n-1+1,那么S20=________.【解析】由數(shù)列{an}的首項(xiàng)a1=1,且滿足a2n+1=2a2n-1,可得數(shù)列{a2n-1}為等比數(shù)列,可得a2n-1=2n-1,所以a2n=a2n-1+1=2n-1+1,所以a2n-1+a2n=2n+1,則S20=(a1+a2)+(a3+a4)+…+(a19+a20)=20565.(必修5P69習(xí)題2改編)已知數(shù)列{an}的首項(xiàng)a1=舉題固法舉題固法名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和即(n-1)an+1-nan+a1=0,所以nan+2-(n+1)an+1+a1=0,兩式相減,得2an+1=an+an+2,所以數(shù)列{an}為等差數(shù)列.即(n-1)an+1-nan+a1=0,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和因?yàn)?9=512,且m≥3,所以2≤m-1≤9,又因?yàn)?16=4×129=4×3×43,且2m-1+1為奇數(shù),所以m=8,k=340.因?yàn)?9=512,且m≥3,所以2≤m-1≤9,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和當(dāng)n≥2時(shí),cn+1<cn,即{cn}在n≥2且n∈N*上單調(diào)遞減,故c1=c2>c3>c4>c5>…,假設(shè)存在三項(xiàng)cs,cp,cr成等差數(shù)列,其中s,p,r∈N*,由于c1=c2>c3>c4>c5>….不妨設(shè)s<p<r,則2cp=cs+cr(*),當(dāng)n≥2時(shí),cn+1<cn,名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和當(dāng)p=2時(shí),s=1,即c1=c2=1,由r≥3時(shí),cr<c2=1,此時(shí)c1,c2,cr不構(gòu)成等差數(shù)列,不合題意.當(dāng)p=3時(shí),由題意知s=1或s=2,即cs=1,r≥4,所以r=5.綜上所述,數(shù)列{cn}中存在三項(xiàng)c1,c3,c5或c2,c3,c5構(gòu)成等差數(shù)列.當(dāng)p=2時(shí),s=1,即c1=c2=1,r≥4,所以r=5.名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和當(dāng)n是奇數(shù)時(shí),Sn=a1+a2+a3+a4+…+an-1+an

=a1+(a2+a3)+(a4+a5)+…+(an-1+an)當(dāng)n是奇數(shù)時(shí),即時(shí)評(píng)價(jià)即時(shí)評(píng)價(jià)名師講壇高考數(shù)學(xué)二輪專題復(fù)習(xí)課件:專題六第2講數(shù)列的遞推關(guān)系與求和1111【解答】

因?yàn)閍1=2,且a2,a3,a4+1成等比數(shù)列,所以a1=2,a23=a2(a4+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論