版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.1.3導(dǎo)數(shù)的幾何意義11.1.3導(dǎo)數(shù)的幾何意義1先來(lái)復(fù)習(xí)導(dǎo)數(shù)的概念
定義:設(shè)函數(shù)y=f(x)在點(diǎn)x0處及其附近有定義,當(dāng)自變量x在點(diǎn)x0處有改變量Δx時(shí)函數(shù)有相應(yīng)的改變量Δy=f(x0+Δx)-f(x0).如果當(dāng)Δx0
時(shí),Δy/Δx的極限存在,這個(gè)極限就叫做函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率)記作即:2先來(lái)復(fù)習(xí)導(dǎo)數(shù)的概念定義:設(shè)函數(shù)y=f(x)在3344下面來(lái)看導(dǎo)數(shù)的幾何意義:
βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy
如圖,曲線C是函數(shù)y=f(x)的圖象,P(x0,y0)是曲線C上的任意一點(diǎn),Q(x0+Δx,y0+Δy)為P鄰近一點(diǎn),PQ為C的割線,PM//x軸,QM//y軸,β為PQ的傾斜角.斜率!5下面來(lái)看導(dǎo)數(shù)的幾何意義:βy=f(x)PQMΔxΔyOxyPQoxyy=f(x)割線切線T請(qǐng)看當(dāng)點(diǎn)Q沿著曲線逐漸向點(diǎn)P接近時(shí),割線PQ繞著點(diǎn)P逐漸轉(zhuǎn)動(dòng)的情況.6PQoxyy=f(x)割線切線T請(qǐng)看當(dāng)點(diǎn)Q沿著曲線逐漸向點(diǎn)P
我們發(fā)現(xiàn),當(dāng)點(diǎn)Q沿著曲線無(wú)限接近點(diǎn)P即Δx→0時(shí),割線PQ有一個(gè)極限位置PT.則我們把直線PT稱(chēng)為曲線在點(diǎn)P處的切線.
設(shè)切線的傾斜角為α,那么當(dāng)Δx→0時(shí),割線PQ的斜率,稱(chēng)為曲線在點(diǎn)P處的切線的斜率.即:
這個(gè)概念:①提供了求曲線上某點(diǎn)切線的斜率的一種方法;②切線斜率的本質(zhì)——函數(shù)在x=x0處的導(dǎo)數(shù).初中平面幾何中圓的切線的定義:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切。這時(shí)直線叫做圓的切線,唯一的公共點(diǎn)叫做切點(diǎn)。割線趨近于確定的位置的直線定義為切線.曲線與直線相切,并不一定只有一個(gè)公共點(diǎn)。7我們發(fā)現(xiàn),當(dāng)點(diǎn)Q沿著曲線無(wú)限接近點(diǎn)P即Δx→0時(shí)88例1:求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方程.QPy=x2+1xy-111OjMDyDx因此,切線方程為y-2=2(x-1),即y=2x.求曲線在某點(diǎn)處的切線方程的基本步驟:先利用切線斜率的定義求出切線的斜率,然后利用點(diǎn)斜式求切線方程.9例1:求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方1010練習(xí):如圖已知曲線,求:(1)點(diǎn)P處的切線的斜率;(2)點(diǎn)P處的切線方程.
yx-2-112-2-11234OP即點(diǎn)P處的切線的斜率等于4.
(2)在點(diǎn)P處的切線方程是y-8/3=4(x-2),即12x-3y-16=0.11練習(xí):如圖已知曲線(1)求出函數(shù)在點(diǎn)x0處的變化率,得到曲線在點(diǎn)(x0,f(x0))的切線的斜率。(2)根據(jù)直線方程的點(diǎn)斜式寫(xiě)出切線方程,即歸納:求切線方程的步驟
無(wú)限逼近的極限思想是建立導(dǎo)數(shù)概念、用導(dǎo)數(shù)定義求函數(shù)的導(dǎo)數(shù)的基本思想,丟掉極限思想就無(wú)法理解導(dǎo)數(shù)概念。12(1)求出函數(shù)在點(diǎn)x0處的變化率,得到作業(yè):2.13作業(yè):2.1314141515161617171.1.3導(dǎo)數(shù)的幾何意義181.1.3導(dǎo)數(shù)的幾何意義1先來(lái)復(fù)習(xí)導(dǎo)數(shù)的概念
定義:設(shè)函數(shù)y=f(x)在點(diǎn)x0處及其附近有定義,當(dāng)自變量x在點(diǎn)x0處有改變量Δx時(shí)函數(shù)有相應(yīng)的改變量Δy=f(x0+Δx)-f(x0).如果當(dāng)Δx0
時(shí),Δy/Δx的極限存在,這個(gè)極限就叫做函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率)記作即:19先來(lái)復(fù)習(xí)導(dǎo)數(shù)的概念定義:設(shè)函數(shù)y=f(x)在203214下面來(lái)看導(dǎo)數(shù)的幾何意義:
βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy
如圖,曲線C是函數(shù)y=f(x)的圖象,P(x0,y0)是曲線C上的任意一點(diǎn),Q(x0+Δx,y0+Δy)為P鄰近一點(diǎn),PQ為C的割線,PM//x軸,QM//y軸,β為PQ的傾斜角.斜率!22下面來(lái)看導(dǎo)數(shù)的幾何意義:βy=f(x)PQMΔxΔyOxyPQoxyy=f(x)割線切線T請(qǐng)看當(dāng)點(diǎn)Q沿著曲線逐漸向點(diǎn)P接近時(shí),割線PQ繞著點(diǎn)P逐漸轉(zhuǎn)動(dòng)的情況.23PQoxyy=f(x)割線切線T請(qǐng)看當(dāng)點(diǎn)Q沿著曲線逐漸向點(diǎn)P
我們發(fā)現(xiàn),當(dāng)點(diǎn)Q沿著曲線無(wú)限接近點(diǎn)P即Δx→0時(shí),割線PQ有一個(gè)極限位置PT.則我們把直線PT稱(chēng)為曲線在點(diǎn)P處的切線.
設(shè)切線的傾斜角為α,那么當(dāng)Δx→0時(shí),割線PQ的斜率,稱(chēng)為曲線在點(diǎn)P處的切線的斜率.即:
這個(gè)概念:①提供了求曲線上某點(diǎn)切線的斜率的一種方法;②切線斜率的本質(zhì)——函數(shù)在x=x0處的導(dǎo)數(shù).初中平面幾何中圓的切線的定義:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切。這時(shí)直線叫做圓的切線,唯一的公共點(diǎn)叫做切點(diǎn)。割線趨近于確定的位置的直線定義為切線.曲線與直線相切,并不一定只有一個(gè)公共點(diǎn)。24我們發(fā)現(xiàn),當(dāng)點(diǎn)Q沿著曲線無(wú)限接近點(diǎn)P即Δx→0時(shí)258例1:求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方程.QPy=x2+1xy-111OjMDyDx因此,切線方程為y-2=2(x-1),即y=2x.求曲線在某點(diǎn)處的切線方程的基本步驟:先利用切線斜率的定義求出切線的斜率,然后利用點(diǎn)斜式求切線方程.26例1:求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方2710練習(xí):如圖已知曲線,求:(1)點(diǎn)P處的切線的斜率;(2)點(diǎn)P處的切線方程.
yx-2-112-2-11234OP即點(diǎn)P處的切線的斜率等于4.
(2)在點(diǎn)P處的切線方程是y-8/3=4(x-2),即12x-3y-16=0.28練習(xí):如圖已知曲線(1)求出函數(shù)在點(diǎn)x0處的變化率,得到曲線在點(diǎn)(x0,f(x0))的切線的斜率。(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省勞動(dòng)協(xié)議樣式
- 2024版數(shù)據(jù)采集服務(wù)合同范本
- 購(gòu)銷(xiāo)合同范本匯編
- 證券交易委托協(xié)議書(shū)范例
- 土地轉(zhuǎn)讓合同協(xié)議書(shū)示范文本
- 供貨合同補(bǔ)充協(xié)議案例
- 賓館轉(zhuǎn)讓協(xié)議范本
- 招投標(biāo)項(xiàng)目合作合同
- 上海市超市熟食產(chǎn)品流通安全協(xié)議
- 集團(tuán)短信服務(wù)合同樣本
- 病理學(xué)實(shí)驗(yàn)2024(臨床 口腔)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年河北廊坊開(kāi)發(fā)區(qū)管理委員招聘筆試參考題庫(kù)附帶答案詳解
- 2022年普通高中地理課程標(biāo)(完整哦)
- 《腦出血》PPT課件(完整版)
- T∕CSCB 0005-2021 人誘導(dǎo)多能干細(xì)胞
- 國(guó)家級(jí)燈具檢驗(yàn)報(bào)告路燈
- 溫室大棚、花卉苗圃采暖項(xiàng)目設(shè)計(jì)方案
- 完整版楚雄彝族自治州城鄉(xiāng)規(guī)劃管理技術(shù)規(guī)定試行7月16日定稿
- 建設(shè)項(xiàng)目環(huán)境保護(hù)設(shè)施竣工驗(yàn)收監(jiān)測(cè)技術(shù)要求
- 煤礦高低壓開(kāi)關(guān)整定計(jì)算(樣本)要點(diǎn)
- 2020精選初中班主任工作總結(jié)
評(píng)論
0/150
提交評(píng)論