




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則2.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.13.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.4.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.5.已知的面積是,,,則()A.5 B.或1 C.5或1 D.6.已知i是虛數(shù)單位,則1+iiA.-12+32i7.已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球,乙盒子中有個(gè)紅球,個(gè)藍(lán)球,同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則()A. B.C. D.8.“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2015年以來,“一帶一路”建設(shè)成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進(jìn)出口情況統(tǒng)計(jì)圖,下列描述錯(cuò)誤的是()A.這五年,出口總額之和比進(jìn)口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進(jìn)口增速最快D.這五年,出口增速前四年逐年下降9.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.12.下列不等式正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.14.函數(shù)的值域?yàn)開________.15.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.16.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.18.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).(1)求異面直線AP,BM所成角的余弦值;(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.19.(12分)已知橢圓:過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.20.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.21.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個(gè)選項(xiàng)可得結(jié)果.【詳解】對于,當(dāng)為內(nèi)與垂直的直線時(shí),不滿足,錯(cuò)誤;對于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,但,錯(cuò)誤;對于,由,知:,又,,正確;對于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學(xué)生對于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.2.B【解析】
,選B.3.B【解析】
由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.5.B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.6.D【解析】
利用復(fù)數(shù)的運(yùn)算法則即可化簡得出結(jié)果【詳解】1+i故選D【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。7.A【解析】分析:首先需要去分析交換后甲盒中的紅球的個(gè)數(shù),對應(yīng)的事件有哪些結(jié)果,從而得到對應(yīng)的概率的大小,再者就是對隨機(jī)變量的值要分清,對應(yīng)的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個(gè)球,有交換的都是紅球、交換的都是藍(lán)球、甲盒的紅球換的乙盒的藍(lán)球、甲盒的藍(lán)球交換的乙盒的紅球,紅球的個(gè)數(shù)就會(huì)出現(xiàn)三種情況;如果交換的是兩個(gè)球,有紅球換紅球、藍(lán)球換藍(lán)球、一藍(lán)一紅換一藍(lán)一紅、紅換藍(lán)、藍(lán)換紅、一藍(lán)一紅換兩紅、一藍(lán)一紅換亮藍(lán),對應(yīng)的紅球的個(gè)數(shù)就是五種情況,所以分析可以求得,故選A.點(diǎn)睛:該題考查的是有關(guān)隨機(jī)事件的概率以及對應(yīng)的期望的問題,在解題的過程中,需要對其對應(yīng)的事件弄明白,對應(yīng)的概率會(huì)算,以及變量的可取值會(huì)分析是多少,利用期望公式求得結(jié)果.8.D【解析】
根據(jù)統(tǒng)計(jì)圖中數(shù)據(jù)的含義進(jìn)行判斷即可.【詳解】對A項(xiàng),由統(tǒng)計(jì)圖可得,2015年出口額和進(jìn)口額基本相等,而2016年到2019年出口額都大于進(jìn)口額,則A正確;對B項(xiàng),由統(tǒng)計(jì)圖可得,2015年出口額最少,則B正確;對C項(xiàng),由統(tǒng)計(jì)圖可得,2019年進(jìn)口增速都超過其余年份,則C正確;對D項(xiàng),由統(tǒng)計(jì)圖可得,2015年到2016年出口增速是上升的,則D錯(cuò)誤;故選:D【點(diǎn)睛】本題主要考查了根據(jù)條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖解決實(shí)際問題,屬于基礎(chǔ)題.9.C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.10.D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.11.A【解析】
在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.12.D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻?,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時(shí),取得最大值.而當(dāng)在同一個(gè)大圓上,且,點(diǎn)與線段在球心的異側(cè)時(shí),取得最大值,如圖所示:此時(shí),故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.14.【解析】
利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時(shí),,當(dāng)時(shí),,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域?yàn)椋海军c(diǎn)睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.15.【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運(yùn)算能力,屬于基礎(chǔ)題.16.【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問題轉(zhuǎn)化為函數(shù)的最值問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點(diǎn),∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點(diǎn),,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因?yàn)樗倪呅问蔷匦?,,,,設(shè)幾何體的體積為,則,∴,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.18.(1).(2)1【解析】
(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個(gè)法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因?yàn)镻A⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因?yàn)椤螧AD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因?yàn)镸為PC的中點(diǎn),所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因?yàn)锳N=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個(gè)法向量.因?yàn)橹本€MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【點(diǎn)睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19.(1)證明見解析;(2)存在,【解析】
(1)將點(diǎn)代入橢圓方程得到,結(jié)合基本不等式,求得取得最小值時(shí),進(jìn)而證得橢圓的離心率為.(2)當(dāng)直線的斜率不存在時(shí),根據(jù)橢圓的對稱性,求得到直線的距離.當(dāng)直線的斜率存在時(shí),聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,利用,則列方程,求得的關(guān)系式,進(jìn)而求得到直線的距離.根據(jù)上述分析判斷出所求的圓存在,進(jìn)而求得定圓的方程.【詳解】(1)證明:∵橢圓經(jīng)過點(diǎn),∴,∴,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,此時(shí)橢圓的離心率.(2)解:∵橢圓的焦距為2,∴,又,∴,.當(dāng)直線的斜率不存在時(shí),由對稱性,設(shè),.∵,在橢圓上,∴,∴,∴到直線的距離.當(dāng)直線的斜率存在時(shí),設(shè)的方程為.由,得,.設(shè),,則,.∵,∴,∴,∴,即,∴到直線的距離.綜上,到直線的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.【點(diǎn)睛】本小題主要考查點(diǎn)和橢圓的位置關(guān)系,考查基本不等式求最值,考查直線和橢圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查分類討論的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.20.(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫?,所以.因?yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)椋云矫妫驗(yàn)槠矫?,所以平面平面.?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)4【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電纜井施工考核試卷
- 纖維素纖維在食品包裝材料中的應(yīng)用考核試卷
- 罐頭食品生產(chǎn)過程中的食品安全風(fēng)險(xiǎn)評(píng)估考核試卷
- 照明器具的熱管理技術(shù)研究考核試卷
- 文化遺產(chǎn)保護(hù)與可持續(xù)旅游考核試卷
- 罐頭食品企業(yè)人力資源規(guī)劃與招聘策略考核試卷
- 木地板企業(yè)全面質(zhì)量管理與持續(xù)改進(jìn)考核試卷
- 電氣設(shè)備電力系統(tǒng)綜合自動(dòng)化考核試卷
- 綠色編織工藝在環(huán)保生活用品考核試卷
- 婚姻穩(wěn)定保障協(xié)議書:忠誠與責(zé)任承擔(dān)
- 傳統(tǒng)園林技藝智慧樹知到期末考試答案章節(jié)答案2024年華南農(nóng)業(yè)大學(xué)
- 蘇教版四年級(jí)數(shù)學(xué)下冊確定位置
- 公司基本情況介紹
- 異步電機(jī)矢量控制系統(tǒng)設(shè)計(jì)
- GB/T 29602-2013固體飲料
- 食品中天然有毒物質(zhì)與食品安全精課件
- 小學(xué)統(tǒng)編版道德與法治一年級(jí)下冊教材分析解讀課件
- 信息經(jīng)濟(jì)學(xué)-信號(hào)傳遞:斯賓塞勞動(dòng)市場模型課件
- 創(chuàng)傷急救-止血、包扎課件
- 豬肉品質(zhì)及其營養(yǎng)調(diào)控
- 小學(xué)數(shù)學(xué) 西南師大版 四年級(jí)下冊 小數(shù)的加法和減法部優(yōu)課件
評(píng)論
0/150
提交評(píng)論