畢業(yè)設(shè)計(jì)論文-外文文獻(xiàn)翻譯-橋梁專業(yè)-翻譯_第1頁(yè)
畢業(yè)設(shè)計(jì)論文-外文文獻(xiàn)翻譯-橋梁專業(yè)-翻譯_第2頁(yè)
畢業(yè)設(shè)計(jì)論文-外文文獻(xiàn)翻譯-橋梁專業(yè)-翻譯_第3頁(yè)
畢業(yè)設(shè)計(jì)論文-外文文獻(xiàn)翻譯-橋梁專業(yè)-翻譯_第4頁(yè)
畢業(yè)設(shè)計(jì)論文-外文文獻(xiàn)翻譯-橋梁專業(yè)-翻譯_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGEPAGE24附錄一英文翻譯原文AUTOMATICDEFLECTIONANDTEMPERATUREMONITORINGOFABALANCEDCANTILEVERCONCRETEBRIDGEbyOlivierBURDET,Ph.D.SwissFederalInstituteofTechnology,Lausanne,SwitzerlandInstituteofReinforcedandPrestressedConcreteSUMMARYThereisaneedforreliablemonitoringsystemstofollowtheevolutionofthebehaviorofstructuresovertime.Deflectionsandrotationsarevaluesthatreflecttheoverallstructurebehavior.Thispaperpresentsaninnovativeapproachtothemeasurementoflong-termdeformationsofbridgesbyuseofinclinometers.Highprecisionelectronicinclinometerscanbeusedtofolloweffectivelylong-termrotationswithoutdisruptionofthetraffic.Inadditiontotheiraccuracy,theseinstrumentshaveproventobesufficientlystableovertimeandreliableforfieldconditions.TheMentuebridgesaretwin565mlongbox-girderpost-tensionedconcretehighwaybridgesunderconstructioninSwitzerland.Thebridgesarebuiltbythebalancedcantilevermethodoveradeepvalley.Thepiersare100mhighandthemainspanis150m.Acentralizeddataacquisitionsystemwasinstalledinonebridgeduringitsconstructionin1997.Everyminute,thesystemrecordstherotationandtemperatureatanumberofmeasuringpoints.Thesimultaneousmeasurementofrotationsandconcretetemperatureatseverallocationsgivesaclearideaofthemovementsinducedbythermalconditions.Thesystemwillbeusedincombinationwithahydrostaticlevelingsetuptofollowthelong-termbehaviorofthebridge.Preliminaryresultsshowthatthesystemperformsreliablyandthattheaccuracyofthesensorsisexcellent.Comparisonoftheevolutionofrotationsandtemperatureindicatethatthestructurerespondstochangesinairtemperatureratherquickly.BACKGROUNDAllovertheworld,thenumberofstructuresinservicekeepsincreasing.Withthedevelopmentoftrafficandtheincreaseddependenceonreliabletransportation,itisbecomingmoreandmorenecessarytoforeseeandanticipatethedeteriorationofstructures.Inparticular,forstructuresthatarepartofmajortransportationsystems,rehabilitationworksneedtobecarefullyplannedinordertominimizedisruptionsoftraffic.Automaticmonitoringofstructuresisthusrapidlydeveloping.Long-termmonitoringofbridgesisanimportantpartofthisoverallefforttoattempttominimizeboththeimpactandthecostofmaintenanceandrehabilitationworkofmajorstructures.Byknowingtherateofdeteriorationofagivenstructure,theengineerisabletoanticipateandadequatelydefinethetimingofrequiredinterventions.Conversely,interventionscanbedelayeduntiltheconditionofthestructurerequiresthem,withoutreducingtheoverallsafetyofthestructure.Thepaperpresentsaninnovativeapproachtothemeasurementoflong-termbridgedeformations.Theuseofhighprecisioninclinometerspermitsaneffective,accurateandunobtrusivefollowingofthelong-termrotations.Themeasurementscanbeperformedundertrafficconditions.Simultaneousmeasurementofthetemperatureatseverallocationsgivesaclearideaofthemovementsinducedbythermalconditionsandthoseinducedbycreepandshrinkage.ThesystempresentedisoperationalsinceAugust1997intheMentuebridge,currentlyunderconstructioninSwitzerland.Thestructurehasamainspanof150mandpiers100mhigh.2.LONG-TERMMONITORINGOFBRIDGESAspartofitsresearchandserviceactivitieswithintheSwissFederalInstituteofTechnologyinLausanne(EPFL),IBAP-ReinforcedandPrestressedConcretehasbeeninvolvedinthemonitoringoflong-timedeformationsofbridgesandotherstructuresforovertwenty-fiveyears[1,2,3,4].Inthepast,IBAPhasdevelopedasystemforthemeasurementoflong-termdeformationsusinghydrostaticleveling[5,6].ThissystemhasbeeninsuccessfulserviceintenbridgesinSwitzerlandforapproximatelytenyears[5,7].Thesystemisrobust,reliableandsufficientlyaccurate,butitrequireshumaninterventionforeachmeasurement,andisnotwellsuitedforautomaticdataacquisition.Oneadditionaldisadvantageofthissystemisthatitisonlyeasilyapplicabletoboxgirderbridgeswithanaccessiblebox.Occasionalcontinuousmeasurementsoverperiodsof24hourshaveshownthattheamplitudeofdailymovementsissignificant,usuallyamountingtoseveralmillimetersoveracoupleofhours.Thisisexemplifiedinfigure1,wheremeasurementsofthetwinLutrivebridges,takenoveraperiodofseveralyearsbeforeandaftertheywerestrengthenedbypost-tensioning,areshownalongwithmeasurementsperformedoveraperiodof24hours.Thescatterobservedinthedataisprimarilycausedbythermaleffectsonthebridges.Inthecaseofthesebox-girderbridgesbuiltbythebalancedcantilevermethod,withamainspanof143.5m,theamplitudeofdeformationsonasunnydayisofthesameorderofmagnitudethanthelongtermdeformationoverseveralyears.Instantaneousmeasurements,asthosemadebyhydrostaticleveling,arenotnecessarilyrepresentativeofthemeanpositionofthebridge.Thisoccursbecausethepositionofthebridgeatthetimeofthemeasurementisinfluencedbythetemperaturehistoryoverthepastseveralhoursanddays.Evenifeverycarewastakentoperformthemeasurementsearlyinthemorningandatthesameperiodeveryyear,ittookarelativelylongtimebeforeitwasrealizedthattheretrofitperformedontheLutrivebridgesin1988byadditionalpost-tensioning[3,7,11]hadnothadthesameeffectonbothofthem.Figure1:Long-termdeflectionsoftheLutrivebridges,comparedtodeflectionsmeasuredina24-hourperiodAutomaticdataacquisition,allowingfrequentmeasurementstobeperformedatanacceptablecost,isthushighlydesirable.Astudyofpossiblesolutionsincludinglaser-basedleveling,fiberopticssensorsandGPS-positioningwasperformed,withtheconclusionthat,providedthattheirlong-termstabilitycanbedemonstrated,currenttypesofelectronicinclinometersaresuitableforautomaticmeasurementsofrotationsinexistingbridges[8].3.MENTUEBRIDGESTheMentuebridgesaretwinbox-girderbridgesthatwillcarrythefutureA1motorwayfromLausannetoBern.Eachbridge,similarindesign,hasanoveralllengthofapproximately565m,andawidthof13.46m,designedtocarrytwolanesoftrafficandanemergencylane.Thebridgescrossadeepvalleywithsteepsides(fig.2).Thebalancedcantileverdesignresultsfromabridgecompetition.The100mhighconcretepierswerebuiltusingclimbingformwork,afterwhichtheconstructionofthebalancedcantileverstarted(fig.3).4.INCLINOMETERSStartingin1995,IBAPinitiatedaresearchprojectwiththegoalofinvestigatingthefeasibilityofameasurementsystemusinginclinometers.Preliminaryresultsindicatedthatinclinometersofferseveraladvantagesfortheautomaticmonitoringofstructures.Table1summarizesthemainpropertiesoftheinclinometersselectedforthisstudy.Oneinterestingpropertyofmeasuringastructure’srotations,isthat,foragivenratioofmaximumdeflectiontospanlength,themaximumrotationisessentiallyindependentfromitsstaticsystem[8].Sincemaximalallowablevaluesofabout1/1,000forlong-termdeflectionsunderpermanentloadsaregenerallyacceptedvaluesworldwide,developmentsmadeforbox-girderbridgeswithlongspans,asisthecaseforthisresearch,areapplicabletootherbridges,forinstancebridgeswithshorterspansandothertypesofcross-sections.Thisissignificantbecauseoftheneedtomonitorsmallerspanswhichconstitutethemajorityofallbridges.TheselectedinclinometersareoftypeWylerZerotronic±1°[9].Theiraccuracyis1microradian(μrad),whichcorrespondstoarotationofonemillimeterperkilometer,averysmallvalue.Foranintermediatespanofacontinuousbeamwithaconstantdepth,amid-spandeflectionof1/20,000wouldinduceamaximumrotationofabout150μrad,or0.15milliradians(mrad).Onepotentialproblemwithelectronicinstrumentsisthattheirmeasurementsmaydriftovertime.Toquantifyandcontrolthisproblem,amechanicaldevicewasdesignedallowingtheinclinometerstobepreciselyrotatedof180°inanhorizontalplane(fig.4).Thedriftofeachinclinometercanbeverysimplyobtainedbycomparingthevaluesobtainedintheinitialandrotatedpositionwithpreviouslyobtainedvalues.Sofar,ithasbeenobservedthatthetypeofinclinometerusedinthisprojectisnotverysensitivetodrifting.5.INSTRUMENTATIONOFTHEMENTUEBRIDGESBecauseanumberofbridgesbuiltbythebalancedcantilevermethodhaveshownanunsatisfactorybehaviorinservice[2,7,10],itwasdecidedtocarefullymonitortheevolutionofthedeformationsoftheMentuebridges.Thesebridgesweredesignedtakingintoconsiderationrecentrecommendationsforthechoiceoftheamountofposttensioning[7,10,13].Monitoringstartingduringtheconstructionin1997andwillbepursuedafterthebridgesareopenedtotrafficin2001.Deflectionmonitoringincludestopographiclevelingbythehighwayauthorities,anhydrostaticlevelingsystemovertheentirelengthofbothbridgesandanetworkofinclinometersinthemainspanoftheNorthbridge.Datacollectioniscoordinatedbytheengineerofrecord,tofacilitatecomparisonofmeasuredvalues.Theinformationgainedfromtheseobservationswillbeusedtofurtherenhancethedesigncriteriaforthattypeofbridge,especiallywithregardtotheamountofpost-tensioning[7,10,11,12,13].Theautomaticmonitoringsystemisdrivenbyadataacquisitionprogramthatgathersandstoresthedata.Thissystemisabletocontrolvarioustypesofsensorssimultaneously,atthepresenttimeinclinometersandthermalsensors.Thecomputerprogramdrivingalltheinstrumentationoffersaflexibleframework,allowingthelateradditionofnewsensorsordataacquisitionsystems.TheuseofthedevelopmentenvironmentLabView[14]allowedtoleveragethelargeuserbaseinthefieldoflaboratoryinstrumentationanddataanalysis.Thedataacquisitionsystemrunsonarathermodestcomputer,withanIntel486/66Mhzprocessor,16MBofmemoryanda500MBharddisk,runningWindowsNT.Allsensordataaregatheredonceperminuteandstoredincompressedformontheharddisk.Thesystemislocatedinthebox-girderontopofpier3(fig.5).Itcanwithstandsevereweatherconditionsandwillrestartitselfautomaticallyafterapoweroutage,whichhappenedfrequentlyduringconstruction.6.SENSORSFigure5(a)showsthelocationoftheinclinometersinthemainspanoftheNorthbridge.Thesensorsareplacedattheaxisofthesupports(①and⑤),at1/4and3/4(③and④)ofthespanandat1/8ofthespanfor②.Inthecrosssection,thesensorsarelocatedontheNorthweb,ataheightcorrespondingtothecenterofgravityofthesection(fig.5a).ThesensorsareallconnectedbyasingleRS-485cabletothecentraldataacquisitionsystemlocatedinthevicinityofinclinometer①.Monitoringofthebridgestartedalreadyduringitsconstruction.Inclinometers①,②and③wereinstalledbeforethespanwascompleted.Theresultingmeasurementweredifficulttointerpret,however,becauseofthewidevariationsofanglesinducedbythevariousstagesofthisparticularThedeflectedshapewillbedeterminedbyintegratingthemeasuredrotationsalongthelengthofthebridge(fig.5b).Althoughthisintegrationisinprinciplestraightforward,ithasbeenshown[8,16]thatthetypeofloadingandpossiblemeasurementerrorsneedtobecarefullytakenintoaccount.Thermalsensorswereembeddedinconcretesothattemperatureeffectscouldbetakenintoaccountfortheadjustmentofthegeometryoftheformworkforsubsequentcasts.Figure6showsthelayoutofthermalsensorsinthemainspan.Themeasurementsectionsarelocatedatthesamesectionsthantheinclinometers(fig.5).Allsensorswereplacedintheformworkbeforeconcretingandwereoperationalassoonastheformworkwasremoved,whichwasrequiredfortheneedsoftheconstruction.Ineachsection,sevenoftheninethermalsensor(indicatedinsolidblackinfig.6)arenowautomaticallymeasuredbythecentraldataacquisitionsystem.7.RESULTSFigure7showstheresultsofinclinometrymeasurementsperformedfromtheendofSeptembertothethirdweekofNovember1997.Allinclinometersperformedwellduringthatperiod.Occasionalinterruptionsofmeasurement,asobservedforexampleinearlyOctoberareduetointerruptionofpowertothesystemduringconstructionoperations.Theoverallsymmetryofresultsfrominclinometersseemtoindicatethattheinstrumentsdriftisnotsignificantforthattimeperiod.Themaximumamplitudeofbridgedeflectionduringtheobservedperiod,estimatedonthebasisoftheinclinometersresults,isaround40mm.Moreaccuratevalueswillbecomputedwhenthemethodofdeterminationofdeflectionswillhavebeenfurthercalibratedwithothermeasurements.Severalperiodsofincrease,respectivelydecrease,ofdeflectionsoverseveraldayscanbeobservedinthegraph.Thisfurtherillustratestheneedforcontinuousdeformationmonitoringtoaccountforsucheffects.Termsofconstruction,andincludedthefollowingoperations:thefinalconcretepoursinthatspan,horizontaljackingofthebridgetocompensatesomepiereccentricities,aswellasthestressingofthecontinuitypost-tensioning,andthede-tensioningoftheguycables(fig.3).Asaconsequence,theinterpretationofthesemeasurementsisquitedifficult.Itisexpectedthatfurthermeasurements,madeafterthecompletionofthebridge,willbesimplertointerpret.Figure8showsadetailofthemeasurementsmadeinNovember,whilefigure.9showstemperaturemeasurementsatthetopandbottomofthesectionatmid-spanmadeduringthatsameperiod.Itisclearthatthemeasureddeflectionscorrespondtochangesinthetemperature.Thetemperatureatthebottomofthesectionfollowscloselyvariationsoftheairtemperature(measuredintheshadenearthenorthwebofthegirder).Ontheotherhand,thetemperatureatthetopofthecrosssectionislesssubjecttorapidvariations.Thismaybeduetothehighelevationofthebridgeaboveground,andalsotothefactthat,duringthemeasuringperiod,therewaslittledirectsunshineonthedeck.Thetemperaturegradientbetweentopandbottomofthecrosssectionhasadirectrelationshipwithshort-termvariations.Itdoesnot,however,appeartoberelatedtothegeneraltendencytodecreaseinrotationsobservedinfig.8.8.FUTUREDEVELOPMENTSFuturedevelopmentswillincludealgorithmstoreconstructdeflectionsfrommeasuredrotations.Toenhancetheaccuracyofthereconstructionofdeflections,a3Dfiniteelementmodeloftheentirestructureisinpreparation[15].Thismodelwillbeusedtoidentifytheinfluenceonrotationsofvariousphenomena,suchascreepofthepiersandgirder,differentialsettlements,horizontalandverticaltemperaturegradientsortrafficloads.MuchworkwillbedevotedtotheinterpretationofthedatagatheredintheMentuebridge.Thefinalpartoftheresearchprojectworkwillfocusontwoaspects:understandingtheverycomplexbehaviorofthestructure,anddeterminingthemostimportantparameters,toallowasimpleandeffectivemonitoringofthebridgesdeflections.Finally,theresearchreportwillproposeguidelinesfordeterminationofdeflectionsfrommeasuredrotationsandpracticalrecommendationsfortheimplementationofmeasurementsystemsusinginclinometers.Itisexpectedthatwithinthecomingyearnewsiteswillbeequippedwithinclinometers.Experiencesmadebyusinginclinometerstomeasuredeflectionsduringloadingtests[16,17]haveshownthatthemethodisveryflexibleandcompetitivewithotherhigh-techmethods.Asanextensiontothecurrentresearchproject,aninnovativesystemforthemeasurementofbridgejointmovementisbeingdeveloped.Thissystemintegrateseasilywiththeexistingmonitoringsystem,becauseitalsousesinclinometers,althoughfromaslightlydifferenttype.9.CONCLUSIONSAninnovativemeasurementsystemfordeformationsofstructuresusinghighprecisioninclinometershasbeendeveloped.Thissystemcombinesahighaccuracywitharelativelysimpleimplementation.Preliminaryresultsareveryencouragingandindicatethattheuseofinclinometerstomonitorbridgedeformationsisafeasibleandoffersadvantages.Thesystemisreliable,doesnotobstructconstructionworkortrafficandisveryeasilyinstalled.Simultaneoustemperaturemeasurementshaveconfirmedtheimportanceoftemperaturevariationsonthebehaviorofstructuralconcretebridges.10.REFERENCES[1]ANDREYD.,Maintenancedesouvragesd’art:méthodologiedesurveillance,PhDDissertationNr679,EPFL,Lausanne,Switzerland,1987.[2]BURDETO.,LoadTestingandMonitoringofSwissBridges,CEBInformationBulletinNr219,SafetyandPerformanceConcepts,Lausanne,Switzerland,1993.[3]BURDETO.,Critèrespourlechoixdelaquantitédeprécontraintedécoulantdel.observationdepontsexistants,CUST-COS96,Clermont-Ferrand,France,1996.[4]HASSANM.,BURDETO.,FAVRER.,CombinationofUltrasonicMeasurementsandLoadTestsinBridgeEvaluation,5thInternationalConferenceonStructuralFaultsandRepair,Edinburgh,Scotland,UK,1993.[5]FAVRER.,CHARIFH.,MARKEYI.,Observationàlongtermedeladéformationdesponts,MandatdeRecherchedel’OFR86/88,FinalReport,EPFL,Lausanne,Switzerland,1990.[6]FAVRER.,MARKEYI.,Long-termMonitoringofBridgeDeformation,NATOResearchWorkshop,BridgeEvaluation,RepairandRehabilitation,NATOASIseriesE:vol.187,pp.85-100,Baltimore,USA,1990.[7]FAVRER.,BURDETO.etal.,Enseignementstirésd’essaisdechargeetd’observationsàlongtermepourl’évaluationdespontsetlechoixdelaprécontrainte,OFRReport,83/90,Zürich,Switzerland,1995.[8]DAVERIOR.,Mesuresdesdéformationsdespontsparunsystèmed’inclinométrie,Rapportdema?triseEPFL-IBAP,Lausanne,Switzerland,1995.[9]WYLERAG.,TechnicalspecificationsforZerotronicInclinometers,Winterthur,Switzerland,1996.[10]FAVRER.,MARKEYI.,GeneralizationoftheLoadBalancingMethod,12thFIPCongress,PrestressedConcreteinSwitzerland,pp.32-37,Washington,USA,1994.[11]FAVRER.,BURDETO.,CHARIFH.,Critèrespourlechoixd’uneprécontrainte:applicationaucasd’unrenforcement,"ColloqueInternationalGestiondesOuvragesd’Art:QuelleStratégiepourMainteniretAdapterlePatrimoine,pp.197-208,Paris,France,1994.[12]FAVRER.,BURDETO.,WahleinergeeignetenVorspannung,Beton-undStahlbetonbau,Beton-undStahlbetonbau,92/3,67,Germany,1997.[13]FAVRER.,BURDETO.,Choixd’unequantitéappropriéedeprécontrainte,SIAD0129,Zürich,Switzerland,1996.[14]NATIONALINSTRUMENTS,LabViewUser.sManual,Austin,USA,1996.[15]BOUBERGUIGA.,ROSSIERS.,FAVRER.etal,Calculnonlinéairedubétonarméetprécontraint,RevueFran?aisduGénieCivil,vol.1n°3,Hermes,Paris,France,1997.[16]FESTE.,Systèmedemesureparinclinométrie:développementd’unalgorithmedecalculdesflèches,Mémoiredema?trisedeDEA,Lausanne/Paris,Switzerland/France,1997.[17]PERREGAUXN.etal.,VerticalDisplacementofBridgesusingtheSOFOSystem:aFiberOpticMonitoringMethodforStructures,12thASCEEngineeringMechanicsConference,SanDiego,USA,tobepublished,1998.譯文平衡懸臂施工混凝土橋撓度和溫度的自動(dòng)監(jiān)測(cè)

作者OlivierBURDET博士

瑞士聯(lián)邦理工學(xué)院,洛桑,瑞士

鋼筋和預(yù)應(yīng)力混凝土研究所

概要:我們想要跟蹤結(jié)構(gòu)行為隨時(shí)間的演化,需要一種可靠的監(jiān)測(cè)系統(tǒng)。撓度和旋轉(zhuǎn)兩個(gè)參數(shù)反映了結(jié)構(gòu)的整體行為。本文提出了一種測(cè)量橋梁長(zhǎng)期變形的創(chuàng)新方法,即,使用傾角儀。高精密電子傾角儀可以有效地追蹤橋梁的長(zhǎng)期旋轉(zhuǎn)而不需要中斷交通。除了準(zhǔn)確,這些儀器已被證明隨著時(shí)間的推移是足夠穩(wěn)定,野外條下也非??煽俊?/p>

Mentue橋,長(zhǎng)565m,雙箱雙室梁,后張法預(yù)應(yīng)力混凝土公路橋梁,修建于瑞士。該橋由平衡懸臂法修建于一條深谷之上。墩高100m,主跨為150m。一個(gè)集中的數(shù)據(jù)采集系統(tǒng)于1997年修建該橋時(shí)安裝在一梁上。每一分鐘,系統(tǒng)記錄了很多測(cè)量點(diǎn)的旋轉(zhuǎn)量和溫度值。在多個(gè)地點(diǎn)同時(shí)測(cè)量出的旋轉(zhuǎn)量和混凝土溫度給出了熱條件引起的變動(dòng)的初步結(jié)果表明該系統(tǒng)運(yùn)行可靠,并且傳感器的準(zhǔn)確性非常優(yōu)秀。

對(duì)旋轉(zhuǎn)和溫度的演變比較表明,結(jié)構(gòu)對(duì)氣溫變化的反應(yīng)相當(dāng)快。

1.背景

遍布世界,服役結(jié)構(gòu)的數(shù)量在不斷增加。隨著交通的發(fā)展,我們?nèi)找嬉蕾囉诳煽康慕煌ㄟ\(yùn)輸,越來(lái)越有必要去預(yù)見(jiàn)和預(yù)測(cè)結(jié)構(gòu)的惡化。特別是,對(duì)于主要運(yùn)輸系統(tǒng)的那部分結(jié)構(gòu),修復(fù)工程需要認(rèn)真規(guī)劃,以盡量減少交通中斷。結(jié)構(gòu)自動(dòng)監(jiān)測(cè)儀器從而迅速發(fā)展。

長(zhǎng)期橋梁監(jiān)測(cè)是這一全面努力的重要組成部分,以嘗試減少對(duì)主要結(jié)構(gòu)的影響和維修工程的費(fèi)用。通過(guò)了解某一特定結(jié)構(gòu)的惡化速度,工程師能夠預(yù)見(jiàn)并充分界定所要求的處理措施的時(shí)機(jī)。相反,不降低結(jié)構(gòu)的整體安全性,處理可以推遲到結(jié)構(gòu)需要相應(yīng)措施的時(shí)候。

本文提出了一種檢測(cè)橋梁長(zhǎng)期變形的創(chuàng)新方法。高精度傾角儀的使用允許我們可以對(duì)長(zhǎng)期旋轉(zhuǎn)進(jìn)行有效、準(zhǔn)確和無(wú)障礙跟蹤。該測(cè)量設(shè)備可以在正常交通狀況下運(yùn)行。同一時(shí)間測(cè)量的、多個(gè)地點(diǎn)的溫度給出了一個(gè)由熱、蠕變和收縮導(dǎo)致的變形的清晰概念。提出該系統(tǒng)的可行性是1997年8月開(kāi)始運(yùn)營(yíng)的修建于瑞士的Mentue橋。該橋主跨150m,墩高100m。

2.橋梁的長(zhǎng)期監(jiān)測(cè)

作為其研究和瑞士聯(lián)邦理工學(xué)院(洛桑聯(lián)邦理工學(xué)院)服務(wù)活動(dòng)的一部分,該橋梁和其他結(jié)構(gòu)涉及到的鋼筋混凝土和預(yù)應(yīng)力混凝土長(zhǎng)期變形的監(jiān)測(cè)已超過(guò)二十五年[1,2,3,4]。在過(guò)去,IBAP已經(jīng)制定了一個(gè)長(zhǎng)期變形測(cè)量的水準(zhǔn)測(cè)量系統(tǒng)[5,6]。該系統(tǒng)已成功的服務(wù)于瑞士的十座橋梁約十年[5,7]。該系統(tǒng)強(qiáng)大,可靠和足夠準(zhǔn)確,但它要求每次測(cè)量要人為操作,并沒(méi)有很好地適合于數(shù)據(jù)自動(dòng)采集。該系統(tǒng)另外的一個(gè)缺點(diǎn)是,它只是較容易適用于可接觸到的箱形梁橋。

偶爾超過(guò)24小時(shí)的連續(xù)測(cè)量表明,它日常變形幅度很大,通常一兩個(gè)小時(shí)內(nèi)幾個(gè)毫米。這體現(xiàn)在圖1中,那里的雙箱雙室梁Lutrive橋在他們被后張之前和爾后超過(guò)數(shù)年的測(cè)量顯示了24小時(shí)內(nèi)的測(cè)量結(jié)果。觀察到的數(shù)據(jù)散射主要是由橋梁的熱效應(yīng)造成的。用平衡懸臂法建造、1435m主跨的箱形梁,在一個(gè)陽(yáng)光明媚的日子變形幅度是與過(guò)去數(shù)年的長(zhǎng)期變形屬于同一量級(jí)瞬時(shí)測(cè)量,如水準(zhǔn)測(cè)量得出的結(jié)果,不一定代表了該橋的平均位置。這是因?yàn)樵跇蛄簻y(cè)量時(shí)的位置是受過(guò)去幾個(gè)小時(shí)、幾天氣溫的溫度歷史影響。即使周全的考慮影響監(jiān)測(cè)測(cè)量結(jié)果的因素并且在每年的同一時(shí)期進(jìn)行測(cè)量,也需要相對(duì)較長(zhǎng)的時(shí)間,我們才能弄清楚Lutrive橋在1988年進(jìn)行改造時(shí)額外橋梁后張[3,7,11]有沒(méi)有產(chǎn)生與兩者相同的影響。

圖1:Lutrive橋的長(zhǎng)期撓度,與24小時(shí)內(nèi)撓度自動(dòng)采集的數(shù)據(jù),使得我們可以在一個(gè)可接受的成本上進(jìn)行方便地測(cè)量,因此非??扇?。一個(gè)可能的解決方案研究,進(jìn)行了包括基于激光水準(zhǔn),光纖傳感器和GPS定位,得出的結(jié)論是,只要可以確保它們的長(zhǎng)期穩(wěn)定性,當(dāng)前類型的電子傾角儀,都適合于自動(dòng)測(cè)量現(xiàn)有橋梁的旋轉(zhuǎn)量[8]。3.MENTUE道橋Mentue橋是單箱雙室箱梁橋,將銜接從洛桑到伯爾尼的未來(lái)A1高速公路。每片梁設(shè)計(jì)類似,擁有約565m的,整體長(zhǎng)度和13.46m的寬度,設(shè)計(jì)承載兩行車線和一個(gè)應(yīng)急車道。橋梁跨越一兩側(cè)有陡峭山坡的深谷(圖2)。平衡懸臂橋梁施工設(shè)計(jì)是與另一橋梁方案比選的結(jié)果。100m高的混凝土橋墩用爬模施工方法完成后,平衡懸臂施工啟動(dòng)(圖3)4.傾角儀從1995年開(kāi)始,IBAP發(fā)起了一個(gè)研究項(xiàng)目,目的是調(diào)查利用傾角儀的測(cè)量系統(tǒng)的可行性。初步結(jié)果表明,傾角儀為結(jié)構(gòu)提供自動(dòng)監(jiān)測(cè)提供了些許優(yōu)點(diǎn)。表1總結(jié)了本研究選擇的傾角儀的主要特性。

衡量結(jié)構(gòu)轉(zhuǎn)動(dòng)的有趣屬性是,對(duì)于一個(gè)給定的最大撓度跨度比,最大旋轉(zhuǎn)基本上是獨(dú)立于它的靜態(tài)系統(tǒng)[8]。由于在永久荷載下,最大允許值約1/1000的長(zhǎng)期撓度已經(jīng)被全世界普遍接受,就像這項(xiàng)研究中大跨度箱梁橋取得發(fā)展,同樣適用于其他橋梁,例如跨度較短橋梁和其他類型跨度區(qū)域。這是很重要的,因?yàn)樾枰獧z測(cè)那些小跨度梁,他們構(gòu)成所有橋梁的大部分結(jié)構(gòu)。

表1傾角儀的主要特性特性描述絕對(duì)的測(cè)量相對(duì)于最初的位置,這種測(cè)量是絕對(duì)的。以防這種儀器的失敗,其他儀器提供的信息仍然是可以利用的。數(shù)據(jù)采集系統(tǒng)可容易聯(lián)接傾角儀是電子儀器,它所產(chǎn)生的電子信號(hào)可以被標(biāo)準(zhǔn)的數(shù)據(jù)采集系統(tǒng)很容易獲得。這項(xiàng)工程所使用的傾角儀包括一種工業(yè)網(wǎng)狀界面(RS485),其可以大大減少纜索的數(shù)量。檢測(cè)原理可以適用于各種橋梁本質(zhì)上,轉(zhuǎn)動(dòng)的幅度是與靜定結(jié)構(gòu)或橋梁跨越的區(qū)域相互獨(dú)立的。因?yàn)閮x器的可靠性,傾角儀可以被安置在可以伸手觸及的地方,因此可以適應(yīng)所有類型的跨越區(qū)域。高精度傾角儀的高精度使得極小變形的測(cè)量成為可能,比如那些只發(fā)生在幾分鐘之內(nèi)的的變形。安裝和操作簡(jiǎn)單傾角儀是非常精巧的儀器,安裝只須很小的空間。我們挑選的傾角儀包括溫度自動(dòng)補(bǔ)償。傳感器可以很容易安置并且能重復(fù)利用。成本盡管相對(duì)很高,與同類檢測(cè)系統(tǒng)相比,傾角儀很具有競(jìng)爭(zhēng)力,并且安裝費(fèi)相當(dāng)?shù)?。選定的傾角儀類型:偉倫Zerotronic±1°[9]。其準(zhǔn)確度為1microradian(μrad),相當(dāng)于一毫米每公里,是一個(gè)非常小的旋轉(zhuǎn)值。對(duì)于一個(gè)通常高度連續(xù)梁的中跨,1/20000的跨中撓度,將導(dǎo)致最大約150μrad的旋轉(zhuǎn),或0.15毫弧度(mrad)。

電子儀器潛在的一個(gè)問(wèn)題是他們的測(cè)量結(jié)果可能隨時(shí)間漂移。為量化和控制這個(gè)問(wèn)題,設(shè)計(jì)了一種機(jī)械裝置,允許傾角為180°旋轉(zhuǎn)正是在一水平面上(圖4)。每個(gè)傾角儀的漂移可以通過(guò)比較獲得的初始值和旋轉(zhuǎn)位置與以前獲得值簡(jiǎn)單地獲得。到目前為止,我們觀察到工程中使用的那種傾角儀的類型對(duì)漂流不是很敏感。5.曼圖橋的測(cè)試設(shè)備一些采用平衡懸臂施工的橋梁,在實(shí)際使用中的狀態(tài)并不理想/r

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論