2023屆湖南省長沙市怡雅學校數(shù)學九年級上冊期末學業(yè)質量監(jiān)測試題含解析_第1頁
2023屆湖南省長沙市怡雅學校數(shù)學九年級上冊期末學業(yè)質量監(jiān)測試題含解析_第2頁
2023屆湖南省長沙市怡雅學校數(shù)學九年級上冊期末學業(yè)質量監(jiān)測試題含解析_第3頁
2023屆湖南省長沙市怡雅學校數(shù)學九年級上冊期末學業(yè)質量監(jiān)測試題含解析_第4頁
2023屆湖南省長沙市怡雅學校數(shù)學九年級上冊期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.162.某班學生做“用頻率估計概率”的實驗時,給出的某一結果出現(xiàn)的頻率折線圖,則符合這一結果的實驗可能是()A.拋一枚硬幣,出現(xiàn)正面朝上B.從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)C.從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃3.下列圖形中為中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.拋物線 D.五角星4.關于的一元二次方程x2﹣2+k=0有兩個相等的實數(shù)根,則k的值為()A.1 B.﹣1 C.2 D.﹣25.如圖,正方形ABCD的邊長為3,點E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點B、D恰好都落在點G處,已知BE=1,則EF的長為(

)A. B. C. D.36.下列事件是必然事件的是()A.半徑為2的圓的周長是2 B.三角形的外角和等于360°C.男生的身高一定比女生高 D.同旁內(nèi)角互補7.下列方程中,是關于的一元二次方程的是()A. B. C. D.8.如圖是二次函數(shù)y=ax1+bx+c(a≠0)圖象的一部分,對稱軸是直線x=﹣1.關于下列結論:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的兩個根為x1=0,x1=﹣4,其中正確的結論有()A.②③ B.②③④ C.②③⑤ D.②③④⑤9.已知如圖1所示的四張牌,若將其中一張牌旋轉180°后得到圖1.則旋轉的牌是()A. B. C. D.10.已知是單位向量,且,那么下列說法錯誤的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣11.在Rt△ABC中,∠C=90°,cosA=,AC=,則BC等于()A. B.1 C.2 D.312.如圖所示,△ABC內(nèi)接于⊙O,∠C=45°.AB=4,則⊙O的半徑為()A. B.4C. D.5二、填空題(每題4分,共24分)13.若一元二次方程有一根為,則_________.14.將拋物線向左平移2個單位得到新的拋物線,則新拋物線的解析式是______.15.已知關于的一元二次方程的一個根是2,則的值是:______.16.如圖,RtABC中,∠C=90°,AC=10,BC=1.動點P以每秒3個單位的速度從點A開始向點C移動,直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P移動到與點C重合時,點P和直線l同時停止運動.在移動過程中,將PEF繞點E逆時針旋轉,使得點P的對應點M落在直線l上,點F的對應點記為點N,連接BN,當BN∥PE時,t的值為_____.17.如圖,已知點D,E是半圓O上的三等分點,C是弧DE上的一個動點,連結AC和BC,點I是△ABC的內(nèi)心,若⊙O的半徑為3,當點C從點D運動到點E時,點I隨之運動形成的路徑長是_____.18.某扇形的弧長為πcm,面積為3πcm2,則該扇形的半徑為_____cm三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別是A(﹣4,1),B(﹣1,2),C(﹣2,4).(1)將△ABC向右平移4個單位后得到△A1B1C1,請畫出△A1B1C1,并寫出點B1的坐標;(2)△A2B2C2和△A1B1C1關于原點O中心對稱,請畫出△A2B2C2,并寫出點C2的坐標;(3)連接點A和點B2,點B和點A2,得到四邊形AB2A2B,試判斷四邊形AB2A2B的形狀(無須說明理由).20.(8分)如圖,直線與雙曲線在第一象限內(nèi)交于、兩點,已知,.(1)__________,____________________,____________________.(2)直接寫出不等式的解集;(3)設點是線段上的一個動點,過點作軸于點,是軸上一點,求的面積的最大值.21.(8分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.(1)求從袋中隨機摸出一球,標號是1的概率;(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.22.(10分)如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.(1)畫出△A1OB1;(2)在旋轉過程中點B所經(jīng)過的路徑長為______;(3)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.23.(10分)在“陽光體育”活動時間,小英、小麗、小敏、小潔四位同學進行一次羽毛球單打比賽,要從中選出兩位同學打第一場比賽.(1)若已確定小英打第一場,再從其余三位同學中隨機選取一位,求恰好選中小麗同學的概率;(2)用畫樹狀圖或列表的方法,求恰好選中小敏、小潔兩位同學進行比賽的概率.24.(10分)如圖1,在中,為銳角,點為射線上一點,聯(lián)結,以為一邊且在的右側作正方形.(1)如果,,①當點在線段上時(與點不重合),如圖2,線段所在直線的位置關系為,線段的數(shù)量關系為;②當點在線段的延長線上時,如圖3,①中的結論是否仍然成立,并說明理由;(2)如果,是銳角,點在線段上,當滿足什么條件時,(點不重合),并說明理由.25.(12分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.(1)求證:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.26.如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.(1)求證:EB=DC;(2)連接DE,若∠BED=50°,求∠ADC的度數(shù).

參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:連接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圓的直徑,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S陰影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故選A.考點:扇形面積的計算.2、C【分析】根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的頻率,約為0.33者即為正確答案.【詳解】解:A、拋一枚硬幣,出現(xiàn)正面朝上的頻率是=0.5,故本選項錯誤;B、從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)頻率約為:==0.5,故本選項錯誤;C、從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本選項正確;D、一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率是=0.25,故本選項錯誤;故選:C.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.同時此題在解答中要用到概率公式.3、B【分析】根據(jù)中心對稱圖形的概念求解.【詳解】A、等邊三角形不是中心對稱圖形,故本選項錯誤;B、平行四邊形是中心對稱圖形,故本選項正確;C、拋物線不是中心對稱圖形,故本選項錯誤;D、五角星不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、A【分析】關于x的一元二次方程x2+2x+k=0有兩個相等的實數(shù)根,可知其判別式為0,據(jù)此列出關于k的不等式,解答即可.【詳解】根據(jù)一元二次方程根與判別式的關系,要使得x2﹣2+k=0有兩個相等實根,只需要△=(-2)2-4k=0,解得k=1.故本題正確答案為A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.5、B【解析】由圖形折疊可得BE=EG,DF=FG;再由正方形ABCD的邊長為3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【詳解】由圖形折疊可得BE=EG,DF=FG,∵正方形ABCD的邊長為3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正確選項為B.【點睛】此題考核知識點是:正方形性質;軸對稱性質;勾股定理.解題的關鍵在于:從圖形折疊過程找出對應線段,利用勾股定理列出方程.6、B【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件),可判斷出正確答案.【詳解】解:A、半徑為2的圓的周長是4,不是必然事件;B、三角形的外角和等于360°,是必然事件;C、男生的身高一定比女生高,不是必然事件;D、同旁內(nèi)角互補,不是必然事件;故選B.【點睛】本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、C【解析】只有一個未知數(shù)且未知數(shù)的最高次數(shù)為2的整式方程為一元二次方程.【詳解】解:A選項,缺少a≠0條件,不是一元二次方程;B選項,分母上有未知數(shù),是分式方程,不是一元二次方程;C選項,經(jīng)整理后得x2+x=0,是關于x的一元二次方程;D選項,經(jīng)整理后是一元一次方程,不是一元二次方程;故選擇C.【點睛】本題考查了一元二次方程的定義.8、D【分析】根據(jù)二次函數(shù)的圖像與性質即可得出答案.【詳解】由圖像可知,a<0,b<0,故①錯誤;∵圖像與x軸有兩個交點∴,故②正確;當x=-3時,y=9a﹣3b+c,在x軸的上方∴y=9a﹣3b+c>0,故③正確;∵對稱軸∴b-4a=0,故④正確;由圖像可知,方程ax1+bx=0的兩個根為x1=0,x1=﹣4,故⑤正確;故答案選擇D.【點睛】本題考查的是二次函數(shù)的圖像與性質,難度系數(shù)中等,解題關鍵是根據(jù)圖像判斷出a,b和c的值或者取值范圍.9、A【解析】解:觀察發(fā)現(xiàn),只有是中心對稱圖形,∴旋轉的牌是.故選A.10、C【詳解】解:∵是單位向量,且,,∴,,,,故C選項錯誤,故選C.11、B【分析】根據(jù)余弦函數(shù)的定義、勾股定理,即可直接求解.【詳解】解:∵在Rt△ABC中,∠C=90°,cosA=,AC=,∴,即,,∴=1,

故選:B.【點睛】本題考查了解直角三角形,解題的基礎是掌握余弦函數(shù)的定義和勾股定理.12、A【解析】試題解析:連接OA,OB.∴在中,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.二、填空題(每題4分,共24分)13、1【分析】直接把x=?1代入一元二次方程中即可得到a+b的值.【詳解】解:把x=?1代入一元二次方程得,所以a+b=1.故答案為1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.14、y=5(x+2)2【分析】根據(jù)二次函數(shù)平移的性質求解即可.【詳解】拋物線的平移問題,實質上是頂點的平移,原拋物線y=頂點坐標為(O,O),向左平移2個單位,頂點坐標為(-2,0),根據(jù)拋物線的頂點式可求平移后拋物線的解析式為y=5(x+2)2,故答案為y=5(x+2)2.【點睛】本題主要考查二次函數(shù)平移的性質,有口訣“左加右減,上加下減”,注意靈活運用.15、1【分析】先將所求式子化成,再根據(jù)一元二次方程的根的定義得出一個a、b的等式,然后將其代入求解即可得.【詳解】由題意,將代入方程得:整理得:,即將代入得:故答案為:1.【點睛】本題考查了一元二次方程的根的定義、代數(shù)式的化簡求值,利用一元二次方程的根的定義得出是解題關鍵.16、【分析】作NH⊥BC于H.首先證明∠PEC=∠NEB=∠NBE,推出EH=BH,根據(jù)cos∠PEC=cos∠NEB,推出=,由此構建方程解決問題即可.【詳解】解:作NH⊥BC于H.∵EF⊥BC,∠PEF=∠NEF,∴∠FEC=∠FEB=90°,∵∠PEC+∠PEF=90°,∠NEB+∠FEN=90°,∴∠PEC=∠NEB,∵PE∥BN,∴∠PEC=∠NBE,∴∠NEB=∠NBE,∴NE=NB,∵HN⊥BE,∴EH=BH,∴cos∠PEC=cos∠NEB,∴=,∵EF∥AC,∴=,∴=,∴EF=EN=(1﹣3t),∴=,整理得:63t2﹣960t+100=0,解得t=或(舍棄),故答案為:.【點睛】本題考查旋轉的性質,平行線的性質,解直角三角形、相似三角形的判定與性質等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題,屬于中考??碱}型.17、π.【分析】連接AI,BI,作OT⊥AB交⊙O于T,連接AT,TB,以T為圓心,TA為半徑作⊙T,在優(yōu)弧AB上取一點G,連接AG,BG.證明∠AIB+∠G=180°,推出A,I,B,G四點共圓,【詳解】如圖,連接AI,BI,作OT⊥AB交⊙O于T,連接AT,TB,以T為圓心,TA為半徑作⊙T,在優(yōu)弧AB上取一點G,連接AG,BG.推出點I的運動軌跡是即可解決問題.∵AB是直徑,∴∠ACB=90°,∵I是△ABC的內(nèi)心,∴∠AIB=135°,∵OT⊥AB,OA=OB,∴TA=TB,∠ATB=90°,∴∠AGB=∠ATB=45°,∴∠AIB+∠G=180°,∴A,I,B,G四點共圓,∴點I的運動軌跡是,由題意,∴∠MTM=30°,易知TA=TM=3,∴點I隨之運動形成的路徑長是,故答案為.【點睛】本題考查了軌跡,垂徑定理、圓周角定理、三角形的內(nèi)心和等邊三角形的性質等知識,解題的關鍵是正確尋找點的運動軌跡.18、1【分析】根據(jù)扇形的面積公式S=,可得出R的值.【詳解】解:∵扇形的弧長為πcm,面積為3πcm2,扇形的面積公式S=,可得R=故答案為1.【點睛】本題考查了扇形面積的求法,掌握扇形面積公式是解答本題的關鍵.三、解答題(共78分)19、(1)如圖,△A1B1C1為所作;見解析;點B1的坐標為(3,2);(2)如圖,△A2B2C2為所作;見解析;點C2的坐標為(﹣2,﹣4);(3)如圖,四邊形AB2A2B為正方形.【分析】(1)利用網(wǎng)格特點和點平移的坐標規(guī)律寫出、、的坐標,然后描點即可得到△;(2)利用網(wǎng)格特點和關于原點對稱的點的坐標特征寫出、、的坐標,然后描點即可得到△;(3)證明四條相等且對角線相等可判斷四邊形為正方形.【詳解】解:(1)如圖1,△為所作;點的坐標為;(2)如圖1,△為所作;點的坐標為;(3)如圖1,四邊形為正方形,(理由:如圖2,在四邊形外側構造如圖所示直角三角形,由坐標網(wǎng)格的特點易證四個直角三角形全等,從而可得四邊形四邊都相等,四個角等于直角)【點睛】本題考查了作圖旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.20、(1),,.(2)或.(3)當時,有最大值,最大值為【分析】(1)先求出反比例函數(shù)解析式,進而求出點A坐標,最后用待定系數(shù)法,即可得出結論;(2)直接利用函數(shù)圖象得出結論;(3)先設出點P坐標,進而表示出△PED的面積,即可得出結論.【詳解】解:(1)∵點B(2,1)在雙曲線上,∴k2=2×1=2,∴雙曲線的解析式為y2=,∵A(1,m)在雙曲線y2=上,∴m=1×2=2,∴A(1,2),∵直線AB:y1=k1x+b過A(1,2)、B(2,1)兩點,∴,∴,∴直線AB的解析式為:y=?x+3;故,,故答案為:-1;2;3;(2)根據(jù)函數(shù)圖象得,不等式y(tǒng)2>y1的解集為0<x<1或x>2;(3)設點,且,則當時,有最大值,最大值為【點睛】此題是反比例函數(shù)綜合題,主要考查了一次函數(shù)和反比例函數(shù)的圖象和性質,待定系數(shù)法,三角形的面積公式,求出直線AB的解析式是解本題的關鍵.21、(1);(2)這個游戲不公平,理由見解析.【分析】(1)由把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個游戲是否公平.【詳解】解:(1)由于三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,故從袋中隨機摸出一球,標號是1的概率為:;(2)這個游戲不公平.畫樹狀圖得:∵共有9種等可能的結果,兩次摸出的球的標號之和為偶數(shù)的有5種情況,兩次摸出的球的標號之和為奇數(shù)的有4種情況,∴P(甲勝)=,P(乙勝)=.∴P(甲勝)≠P(乙勝),故這個游戲不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.22、(1)畫圖見解析;(2);(3).【解析】試題分析:(1)根據(jù)網(wǎng)格結構找出點A、B繞點O逆時針旋轉90°后的對應點A1、B1的位置,然后順次連接即可;(2)利用勾股定理列式求OB,再利用弧長公式計算即可得解;(3)利用勾股定理列式求出OA,再根據(jù)AB所掃過的面積=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO掃過的面積=S扇形B1OB,然后計算即可得解.試題解析:(1)△A1OB1如圖所示;(2)由勾股定理得,BO=,所以,點B所經(jīng)過的路徑長=(3)由勾股定理得,OA=,∵AB所掃過的面積=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO掃過的面積=S扇形B1OB,∴線段AB、BO掃過的圖形的面積之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考點:1.作圖-旋轉變換;2.勾股定理;3.弧長的計算;4.扇形面積的計算.23、(1);(2).【分析】(1)由題意直接利用概率公式求解即可求得答案;(2)根據(jù)題意列出表格,然后由表格求得所有等可能的結果與恰好選中小敏、小潔兩位同學的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)若已確定小英打第一場,再從其余三位同學中隨機選取一位,共有3種情況,而選中小麗的情況只有一種,所以P(恰好選中小麗)=;(2)列表如下:所有可能出現(xiàn)的情況有12種,其中恰好選中小敏、小潔兩位同學組合的情況有兩種,所以P(小敏,小潔)==.【點睛】本題考查列表法與樹狀圖法.24、(1)①垂直,相等;②見解析;(2)見解析.【分析】(1)①根據(jù)正方形的性質得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質即可得到結論;②由正方形ADEF的性質可推出△DAB≌△FAC,根據(jù)全等三角形的性質得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質即可得到結論;(2)過點A作AG⊥AC交CB或CB的延長線于點G,于是得到∠GAC=90°,可推出∠ACB=∠AGC,證得AC=AG,根據(jù)(1)的結論于是得到結果.【詳解】(1)①正方形ADEF中,AD=AF.∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF.在△DAB與△FAC中,,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案為垂直、相等;②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD與△CAF中,∵,∴△BAD≌△CAF,∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°,∴CF⊥BD;(2)當∠ACB=45°時,CF⊥BD(如圖).理由:過點A作AG⊥AC交CB的延長線于點G,則∠GAC=90°.∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG.在△GAD與△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論