![2023屆河南省鶴壁市淇縣一中高考數(shù)學(xué)押題試卷(含答案解析)_第1頁](http://file4.renrendoc.com/view/5ead26ee9205785406630de14bc2981b/5ead26ee9205785406630de14bc2981b1.gif)
![2023屆河南省鶴壁市淇縣一中高考數(shù)學(xué)押題試卷(含答案解析)_第2頁](http://file4.renrendoc.com/view/5ead26ee9205785406630de14bc2981b/5ead26ee9205785406630de14bc2981b2.gif)
![2023屆河南省鶴壁市淇縣一中高考數(shù)學(xué)押題試卷(含答案解析)_第3頁](http://file4.renrendoc.com/view/5ead26ee9205785406630de14bc2981b/5ead26ee9205785406630de14bc2981b3.gif)
![2023屆河南省鶴壁市淇縣一中高考數(shù)學(xué)押題試卷(含答案解析)_第4頁](http://file4.renrendoc.com/view/5ead26ee9205785406630de14bc2981b/5ead26ee9205785406630de14bc2981b4.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,那么等于()A. B. C. D.2.設(shè)全集,集合,,則()A. B. C. D.3.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)4.已知集合A,則集合()A. B. C. D.5.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.6.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關(guān)于坐標(biāo)原點對稱,則的最小值為()A. B. C. D.7.函數(shù)與的圖象上存在關(guān)于直線對稱的點,則的取值范圍是()A. B. C. D.8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.明代數(shù)學(xué)家程大位(1533~1606年),有感于當(dāng)時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.10.已知定義在上的函數(shù)滿足,且當(dāng)時,.設(shè)在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.11.已知復(fù)數(shù),則的虛部為()A. B. C. D.112.復(fù)數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.點P是△ABC所在平面內(nèi)一點且在△ABC內(nèi)任取一點,則此點取自△PBC內(nèi)的概率是____14.若的展開式中只有第六項的二項式系數(shù)最大,則展開式中各項的系數(shù)和是________.15.若點在直線上,則的值等于______________.16.已知實數(shù),滿足約束條件,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)誠信是立身之本,道德之基,我校學(xué)生會創(chuàng)設(shè)了“誠信水站”,既便于學(xué)生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調(diào)研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學(xué)生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.18.(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標(biāo)方程.19.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.20.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.21.(12分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.22.(10分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
求出集合,然后進行并集的運算即可.【題目詳解】∵,,∴.故選:A.【答案點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.2.B【答案解析】
可解出集合,然后進行補集、交集的運算即可.【題目詳解】,,則,因此,.故選:B.【答案點睛】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎(chǔ)題.3.D【答案解析】
原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【題目詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【答案點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.4.A【答案解析】
化簡集合,,按交集定義,即可求解.【題目詳解】集合,,則.故選:A.【答案點睛】本題考查集合間的運算,屬于基礎(chǔ)題.5.B【答案解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【題目詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【答案點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力.6.B【答案解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【題目詳解】由題可知,對其向左平移個單位長度后,,其圖像關(guān)于坐標(biāo)原點對稱故的最小值為故選:B【答案點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.7.C【答案解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結(jié)論.【題目詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當(dāng)時,;當(dāng)時,,故時,取得極大值,也即為最大值,當(dāng)趨近于時,趨近于,所以滿足條件.故選:C.【答案點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運算求解等數(shù)學(xué)能力,屬于難題.8.A【答案解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【題目詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【答案點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.9.C【答案解析】
根據(jù)程序框圖依次計算得到答案.【題目詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【答案點睛】本題考查了程序框圖的計算,意在考查學(xué)生的理解能力和計算能力.10.C【答案解析】
由已知先求出,即,進一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【題目詳解】當(dāng)時,則,,所以,,顯然當(dāng)時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時,單調(diào)遞增,當(dāng)時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【答案點睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.11.C【答案解析】
先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【題目詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【答案點睛】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.12.B【答案解析】
利用乘法運算化簡復(fù)數(shù)即可得到答案.【題目詳解】由已知,,所以,解得.故選:B【答案點睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運算,考查學(xué)生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
設(shè)是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結(jié)合幾何概型求得點取自三角形的概率.【題目詳解】設(shè)是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內(nèi)的概率是.故答案為:【答案點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎(chǔ)題.14.【答案解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數(shù)和.【題目詳解】由的展開式中只有第六項的二項式系數(shù)最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數(shù)和是:.故答案為:1.【答案點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數(shù)和的求法,屬于基礎(chǔ)題.15.【答案解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【題目詳解】由題意,得,又,解得,當(dāng)時,則,此時;當(dāng)時,則,此時,綜上,.故答案為:.【答案點睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.16.【答案解析】
作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯(lián)立,解得點B坐標(biāo),即可求得答案.【題目詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【答案點睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【答案解析】
(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【題目詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.(Ⅲ)兩次活動效果均好.理由:活動舉辦后,“水站誠信度'由和看出,后繼一周都有提升.【答案點睛】本題考查平均數(shù)公式和古典概型概率計算公式;考查運算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關(guān)鍵;屬于中檔題、??碱}型.18.(1);(2).【答案解析】
(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【題目詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標(biāo)方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當(dāng)最大時,直線l經(jīng)過圓心.直線l的斜率為,方程為,所以直線l的直角坐標(biāo)方程為.【答案點睛】本題考查參數(shù)方程與普通方程互化、直角坐標(biāo)方程與極坐標(biāo)方程互化、直線與曲線的位置關(guān)系,考查化歸和轉(zhuǎn)化思想,屬于中檔題.19.(1)3360元;(2)見解析【答案解析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【題目詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.【答案點睛】本題考查了頻率分布直方圖與離散型隨機變量的分布列與數(shù)學(xué)期望計算問題,屬于中檔題.20.(1)證明見解析;(2).【答案解析】
(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問題轉(zhuǎn)化為求到面的距離,利用等體積法求點面距離即可.【題目詳解】(1)因為棱柱是直三棱柱,所以又,所以面又,分別為AB,BC的中點所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點到平面的距離等于點到平面的距離設(shè)點到面的距離為由(1)可知,面且在中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年新能源汽車廣告與營銷平臺企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年數(shù)據(jù)庫云服務(wù)企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年廚電產(chǎn)品健康生活行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 休閑娛樂消費合同范本
- 企業(yè)購買股票合同范本
- 公對公貨款合同范本
- 2025-2030年壁畫藝術(shù)主題社區(qū)行業(yè)跨境出海戰(zhàn)略研究報告
- 農(nóng)村承包集體魚塘合同范例
- 醫(yī)院廉潔合同范本
- 人工勞務(wù)派遣合同范例
- 校長在行政會上總結(jié)講話結(jié)合新課標(biāo)精神給學(xué)校管理提出3點建議
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
- 2025年護理質(zhì)量與安全管理工作計劃
- 湖南大學(xué) 嵌入式開發(fā)與應(yīng)用(張自紅)教案
- 地下商業(yè)街的規(guī)劃設(shè)計
- 長安大學(xué)《畫法幾何與機械制圖一》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024-2030年全球及中國低密度聚乙烯(LDPE)行業(yè)需求動態(tài)及未來發(fā)展趨勢預(yù)測報告
- 2024年新華東師大版七年級上冊數(shù)學(xué)全冊教案(新版教材)
- 醫(yī)院物業(yè)管理制度
- 初中數(shù)學(xué)思維訓(xùn)練雙十字相乘法因式分解練習(xí)100道及答案
- (正式版)QC∕T 625-2024 汽車用涂鍍層和化學(xué)處理層
評論
0/150
提交評論