廣西示范中學(xué)2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
廣西示范中學(xué)2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
廣西示范中學(xué)2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
廣西示范中學(xué)2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
廣西示范中學(xué)2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余15頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.2.已知向量,則向量在向量方向上的投影為()A. B. C. D.3.如圖,在底面邊長為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.54.雙曲線:(,)的一個焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.5.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點(diǎn)為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④6.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定7.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度8.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.9.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.10.設(shè),且,則()A. B. C. D.11.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.若在上單調(diào)遞減,則的取值范圍是_______14.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為______.15.在數(shù)列中,,,曲線在點(diǎn)處的切線經(jīng)過點(diǎn),下列四個結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號是______.16.已知函數(shù)有且只有一個零點(diǎn),則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.18.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動,,.(1)求點(diǎn)的軌跡的方程;(2)過點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),,求的取值范圍.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.20.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.21.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.22.(10分)已知函數(shù),.(1)若時,解不等式;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

根據(jù)題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎(chǔ)題.2.A【解析】

投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.3.A【解析】

根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.4.A【解析】

根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5.B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.6.B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.7.D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖象向右平移個單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.8.C【解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.9.D【解析】

首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.10.C【解析】

將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點(diǎn)睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡單題目.11.A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對稱且在上為減函數(shù),則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對稱,因?yàn)閷θ我?,,都有,所以函?shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.12.A【解析】

準(zhǔn)確畫圖,由圖形對稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時事半功倍,信手拈來.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時,顯然,符合題意;當(dāng)時,在恒成立,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.14.【解析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【點(diǎn)睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計算能力,難度較難.15.①③④【解析】

先利用導(dǎo)數(shù)求得曲線在點(diǎn)處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個結(jié)論中正確的結(jié)論編號.【詳解】∵,∴曲線在點(diǎn)處的切線方程為,則.∵,∴,則是首項(xiàng)為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號是①③④.故答案為:①③④【點(diǎn)睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.16.【解析】

當(dāng)時,轉(zhuǎn)化條件得有唯一實(shí)數(shù)根,令,通過求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時,,故不是函數(shù)的零點(diǎn);當(dāng)時,即,令,,,當(dāng)時,;當(dāng)時,,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實(shí)數(shù)根,則.故答案為:.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)求導(dǎo)得到,解得答案.(2)變形得到,令函數(shù),求導(dǎo)得到函數(shù)單調(diào)區(qū)間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數(shù),,令解得,當(dāng)時,時.函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,而函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,恒成立.【點(diǎn)睛】本題考查了根據(jù)切線求參數(shù),證明不等式,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力,綜合應(yīng)用能力.18.(1)(2)【解析】

(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡得的軌跡的方程為.(2)設(shè)直線的方程為,與的方程聯(lián)立,消去得,,設(shè),,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.【點(diǎn)睛】此題考查軌跡問題,橢圓和直線相交,注意坐標(biāo)表示向量進(jìn)行轉(zhuǎn)化的處理技巧,屬于較難題目.19.(1)見解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,利用韋達(dá)定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結(jié)果.試題解析:(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個交點(diǎn),因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即20.(Ⅰ);(Ⅱ).【解析】

(I)零點(diǎn)分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當(dāng)時,化簡得.解得;當(dāng)時,化簡得.此時無解;當(dāng)時,化簡得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當(dāng)時,方程等價于方程.易知當(dāng),方程在上有兩個不相等的實(shí)數(shù)根.此時方程在上無解.滿足條件.當(dāng)時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實(shí)數(shù)根.當(dāng)時,易知當(dāng),方程在上有且只有一個實(shí)數(shù)根.此時方程在上也有一個實(shí)數(shù)根.滿足條件.綜上,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查解絕對值不等式以及方程根的個數(shù)求參數(shù)范圍,考查學(xué)生的運(yùn)算能力,是一道中檔題.21.(1)證明見解析(2)【解析】

(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論