廣東省茂名市直屬學校2022年數(shù)學九年級上冊期末統(tǒng)考試題含解析_第1頁
廣東省茂名市直屬學校2022年數(shù)學九年級上冊期末統(tǒng)考試題含解析_第2頁
廣東省茂名市直屬學校2022年數(shù)學九年級上冊期末統(tǒng)考試題含解析_第3頁
廣東省茂名市直屬學校2022年數(shù)學九年級上冊期末統(tǒng)考試題含解析_第4頁
廣東省茂名市直屬學校2022年數(shù)學九年級上冊期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.下列式子中,為最簡二次根式的是()A. B. C. D.2.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,設∠ACD=α,則cosα的值為()A. B. C. D.3.已知,且α是銳角,則α的度數(shù)是()A.30° B.45° C.60° D.不確定4.如圖,是由7個大小相同的小正方體堆砌而成的幾何體,若從標有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是()A.① B.② C.③ D.④5.二次函數(shù)y=-2(x+1)2+3的圖象的頂點坐標是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)6.如圖,正五邊形ABCD內(nèi)接于⊙O,連接對角線AC,AD,則下列結(jié)論:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判斷正確的是()A.①③④ B.①②③ C.①②④ D.①②③④7.如圖,直徑為10的⊙A山經(jīng)過點C(0,5)和點0(0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC的余弦值為()A. B. C. D.8.如圖,一個正六邊形轉(zhuǎn)盤被分成6個全等三角形,任意轉(zhuǎn)動這個轉(zhuǎn)盤1次,當轉(zhuǎn)盤停止時,指針指向陰影區(qū)域的概率是()A. B. C. D.9.一元二次方程的根的情況是()A.有兩個不相等實數(shù)根 B.有兩個相等實數(shù)根 C.沒有實數(shù)根 D.無法確定10.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.111.有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?若設每輪傳染中平均一個人傳染了x個人,那么x滿足的方程是()A. B. C. D.12.如圖,用菱形紙片按規(guī)律依次拼成如圖圖案,第個圖案有個菱形紙片,第個圖案有個菱形紙片,第個圖案有個菱形紙片,按此規(guī)律,第個圖案中菱形紙片數(shù)量為()A. B. C. D.二、填空題(每題4分,共24分)13.太陽從西邊升起是_____事件.(填“隨機”或“必然”或“不可能”).14.若3是關于x的方程x2-x+c=0的一個根,則方程的另一個根等于____.15.如圖,四邊形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若AP⊥DP,則BP的長為_____.16.若反比例函數(shù)的圖象經(jīng)過點(2,﹣2),(m,1),則m=_____.17.若關于x的一元二次方程x22x+m=0有實數(shù)根,則實數(shù)m的取值范圍是______.18.若,,是反比例函數(shù)圖象上的點,且,則、、的大小關系是__________.三、解答題(共78分)19.(8分)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點F作GF⊥AF交AD于點G,設.(1)求證:AE=GE;(2)當點F落在AC上時,用含n的代數(shù)式表示的值;(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.20.(8分)如圖,在平面直角坐標系中,點的坐標為,點在第一象限,,點是上一點,,.(1)求證:;(2)求的值.21.(8分)解方程:3x(x﹣1)=2﹣2x.22.(10分)如圖,在平行四邊形ABCD中,AE⊥BC于點E.若一個三角形模板與△ABE完全重合地疊放在一起,現(xiàn)將該模板繞點E順時針旋轉(zhuǎn).要使該模板旋轉(zhuǎn)60°后,三個頂點仍在平行四邊形ABCD的邊上,請?zhí)骄科叫兴倪呅蜛BCD的角和邊需要滿足的條件.23.(10分)如圖,在中,,,于點,是上的點,于點,,交于點.(1)求證:;(2)當?shù)拿娣e最大時,求的長.24.(10分)已知關于x的一元二次方程x2+2x+2k-5=0有兩個實數(shù)根.(1)求實數(shù)k的取值范圍.(2)若方程的一個實數(shù)根為4,求k的值和另一個實數(shù)根.(3)若k為正整數(shù),且該方程的根都是整數(shù),求k的值.25.(12分)如圖是某貨站傳送貨物的平面示意圖.原傳送帶與地面的夾角為,,為了縮短貨物傳送距離,工人師傅欲增大傳送帶與地面的夾角,使其由改為,原傳送帶長為.求:(1)新傳送帶的長度;(2)求的長度.26.如圖,直線經(jīng)過⊙上的點,直線與⊙交于點和點,與⊙交于點,連接,.已知,,,.(1)求證:直線是⊙的切線;(2)求的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】利用最簡二次根式定義判斷即可.【詳解】A、原式,不符合題意;B、是最簡二次根式,符合題意;C、原式,不符合題意;D、原式,不符合題意;故選B.【點睛】此題考查了最簡二次根式,熟練掌握最簡二次根式是解本題的關鍵.2、A【解析】根據(jù)勾股定理求出AB的長,在求出∠ACD的等角∠B,即可得到答案.【詳解】如圖,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴.故選:A.【點睛】此題考查解直角三角形,求一個角的三角函數(shù)值有時可以求等角的對應函數(shù)值.3、C【分析】根據(jù)sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關鍵.4、A【分析】根據(jù)題意得到原幾何體的主視圖,結(jié)合主視圖選擇.【詳解】解:原幾何體的主視圖是:.視圖中每一個閉合的線框都表示物體上的一個平面,左側(cè)的圖形只需要兩個正方體疊加即可.故取走的正方體是①.故選A.【點睛】本題考查了簡單組合體的三視圖,中等難度,作出幾何體的主視圖是解題關鍵.5、B【解析】分析:據(jù)二次函數(shù)的頂點式,可直接得出其頂點坐標;解:∵二次函數(shù)的解析式為:y=-(x-1)2+3,∴其圖象的頂點坐標是:(1,3);故選A.6、B【分析】根據(jù)圓的正多邊形性質(zhì)及圓周角與弦的關系解題即可.【詳解】解:①∴BC∥AD,故本選項正確;②∵BC=CD=DE,∴∠BAC=∠CAD=∠DAE,∴∠BAE=3∠CAD,故本選項正確;③在△BAC和△EAD中,BA=AE,BC=DE,∠B=∠E,∴△BAC≌△EAD(SAS),故本選項正確;④∵AB+BC>AC,∴2CD>AC,故本選項錯誤.故答案為①②③.【點睛】此題考查圓的正多邊形性質(zhì)及圓周角與弦的關系,理解定義是關鍵.7、C【分析】連接CD,由直徑所對的圓周角是直角,可得CD是直徑;由同弧所對的圓周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的長可求出sin∠ODC.【詳解】設⊙A交x軸于另一點D,連接CD,∵∠COD=90°,∴CD為直徑,∵直徑為10,∴CD=10,∵點C(0,5)和點O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故選C.【點睛】此題考查了圓周角定理、銳角三角函數(shù)的知識.注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應用.8、C【解析】試題分析:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成6部分,陰影部分占2份,轉(zhuǎn)盤停止轉(zhuǎn)動時指針指向陰影部分的概率是=;故選C.考點:幾何概率.9、A【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=49>0,由此即可得出方程有兩個不相等的實數(shù)根.【詳解】解:∵在方程中,△=,∴方程有兩個不相等的實數(shù)根.故選:A.【點睛】本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.10、A【解析】連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關鍵.11、D【分析】先由題意列出第一輪傳染后患流感的人數(shù),再列出第二輪傳染后患流感的人數(shù),即可列出方程.【詳解】解:設每輪傳染中平均一個人傳染了x個人,

則第一輪傳染后患流感的人數(shù)是:1+x,

第二輪傳染后患流感的人數(shù)是:1+x+x(1+x),

因此可列方程,1+x+x(1+x)=1.

故選:D.【點睛】本題主要考查一元二次方程的應用,找到等量關系是解題的關鍵.12、D【解析】觀察圖形發(fā)現(xiàn):每增加一個圖形,菱形紙片增加4個,從而得到通項公式,代入n=7求解即可.【詳解】觀察圖形發(fā)現(xiàn):第1個圖案中有5=4×1+1個菱形紙片;第2個圖案中有9=4×2+1個菱形紙片;第3個圖形中有13=4×3+1個菱形紙片,…第n個圖形中有4n+1個菱形紙片,當n=7時,4×7+1=29個菱形紙片,故選:D.【點睛】屬于規(guī)律型:圖形的變化類,找出圖中菱形紙片個數(shù)的變化規(guī)律是解題的關鍵.二、填空題(每題4分,共24分)13、不可能【分析】根據(jù)隨機事件的概念進行判斷即可.【詳解】太陽從西邊升起是不可能的,∴太陽從西邊升起是不可能事件,故答案為:不可能.【點睛】本題考查了隨機事件的概念,掌握知識點是解題關鍵.14、-1【解析】已知3是關于x的方程x1-5x+c=0的一個根,代入可得9-3+c=0,解得,c=-6;所以由原方程為x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一個根是x=-1.15、1或2【分析】設BP=x,則PC=3-x,根據(jù)平行線的性質(zhì)可得∠B=90°,根據(jù)同角的余角相等可得∠CDP=∠APB,即可證明△CDP∽△BPA,根據(jù)相似三角形的性質(zhì)列方程求出x的值即可得答案.【詳解】設BP=x,則PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的長為1或2,故答案為:1或2【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握相似三角形的對應邊成比例列方程是解題的關鍵.16、-1【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征解答.【詳解】解:設反比例函數(shù)的圖象為y=,把點(2,﹣2)代入得k=﹣1,則反比例函數(shù)的圖象為y=﹣,把(m,1)代入得m=﹣1.故答案為﹣1.【點睛】本題考查反比例函數(shù)圖象的性質(zhì),關鍵在于熟記性質(zhì).17、m≤1【分析】利用判別式的意義得到,然后解不等式即可.【詳解】解:根據(jù)題意得,

解得.

故答案為:.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的兩個實數(shù)根;當△=0時,方程有兩個相等的兩個實數(shù)根;當△<0時,方程無實數(shù)根.18、【分析】根據(jù)“反比例函數(shù)”可知k=3,可知該函數(shù)圖像過第一、三象限,在第一象限,y隨x的增大而減小且y>0,在第三象限,y隨x的增大而減小且y<0,據(jù)此進行排序即可.【詳解】由題意可知該函數(shù)圖像過第一、三象限,在第一象限,y隨x的增大而減小且y>0,在第三象限,y隨x的增大而減小且y<0,因為所以所以故答案填.【點睛】本題考查的是反比例函數(shù)的性質(zhì),能夠熟練掌握反比例函數(shù)的性質(zhì)是解題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2);(3)n=2或.【分析】(1)因為GF⊥AF,由對稱易得AE=EF,則由直角三角形的兩個銳角的和為90度,且等邊對等角,即可證明E是AG的中點;(2)可設AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC,則,因為AB=DC,且DA,AE已知表示出來了,所以可求出AB,即可解答;(3)求以點F,C,G為頂點的三角形是直角三角形時的n,需要分類討論,一般分三個,∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進行分析解答.【詳解】(1)證明:由對稱得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG.(2)解:設AE=a,則AD=na,當點F落在AC上時(如圖1),由對稱得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC,∴∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB=,∴∴.(3)解:設AE=a,則AD=na,由AD=1AB,則AB=.當點F落在線段BC上時(如圖2),EF=AE=AB=a,此時,∴n=1,∴當點F落在矩形外部時,n>1.∵點F落在矩形的內(nèi)部,點G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,則點F落在AC上,由(2)得=,∴n=2.若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴,∴AB·DC=DG·AE,即.解得n=或n=<1(不合題意,舍去),∴當n=2或時,以點F,C,G為頂點的三角形是直角三角形.考點:矩形的性質(zhì);解直角三角形的應用;相似三角形的判定與性質(zhì);分類討論;壓軸題.20、(1)證明見解析;(2)cos∠ABO=【分析】(1)過點作點,在中,利用銳角三角函數(shù)的知識求出BD的長,再用勾股定理求出OD、AB、BC的長,所以AB=BC,從而得到∠ACB=∠BAO,然后根據(jù)兩角分別相等的兩個三角形相似解答即可;(2)在中求出∠BAO的余弦值,根據(jù)∠ABO=∠BAO可得答案.【詳解】(1)在平面直角坐標系中,點的坐標為,,,,∠OAB=∠ABO,過點作點,則,在中,,,,,在中,,,∴CD=6-2=4,∴BC=,∴AB=BC,∴∠ACB=∠BAO,∴∠ACB=∠ABO=∠BAO,又∵∠BAC=∠OAB,(兩角分別相等的兩個三角形相似);(2)在中,,∵∠ABO=∠BAO,,即的值為.【點睛】本題考查了坐標與圖形的性質(zhì),解直角三角形,等腰三角形的判定與性質(zhì),勾股定理等知識,正確作出輔助線是解答本題的關鍵.21、x1=1,x2=﹣.【解析】把右邊的項移到左邊,用提公因式法因式分解求出方程的根.【詳解】解:3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0,3x+2=0,解得x1=1,x2=﹣.考點:解一元二次方程-因式分解法;因式分解-提公因式法.22、詳見解析.【分析】三角形模板繞點E旋轉(zhuǎn)60°后,E為旋轉(zhuǎn)中心,位置不變,仍在邊BC上,過點E分別做射線EM,EN,EM,EN分別AB,CD于F,G使得∠BEM=∠AEN=60°,可證△BEF為等邊三角形,即EB=EF,故B的對應點為F.根據(jù)SAS可證,即EA=GE,故A的對應點為G.由此可得:要使該模板旋轉(zhuǎn)60°后,三個頂點仍在平行四邊形ABCD的邊上,平行四邊形ABCD的角和邊需要滿足的條件是:∠ABC=60°,AB=BC.【詳解】解:要使該模板旋轉(zhuǎn)60°后,三個頂點仍在的邊上,的角和邊需要滿足的條件是:∠ABC=60°,AB=BC理由如下:三角形模板繞點E旋轉(zhuǎn)60°后,E為旋轉(zhuǎn)中心,位置不變,仍在邊BC上,過點E分別做射線EM,EN,使得∠BEM=∠AEN=60°,∵AE⊥BC,即∠AEB=∠AEC=90°,∴∠BEM<∠BEA∴射線EM只能與AB邊相交,記交點為F在△BEF中,∵∠B=∠BEF=60°,∴∠BFE=180°-∠B-∠BEF=60°∴∠B=∠BEF=∠BFE=60°∴△BEF為等邊三角形∴EB=EF∵當三角形模板繞點E旋轉(zhuǎn)60°后,點B的對應點為F,此時點F在邊AB邊上∵∠AEC=90°∴∠AEN=60°<∠AEC∴射線EN只可能與邊AD或邊CD相交若射線EN與CD相交,記交點為G在Rt△AEB中,∠1=90°-∠B=30°∴BE=∵AB=BC=BE+EC∴EC=∵∠GEC=∠AEC-∠AEG=90°-60°=30°∵在中,AB//CD∠C=180°-∠ABC=120°又∵∠EGC=180°-120°-30°=30°∴EC=GC即AF=EF=EC=GC=,且∠1=∠GEC=30°∴∴EA=GE∴當三角形模板繞點E旋轉(zhuǎn)60°后,點A的對應點為G,此時點G在邊CD邊上∴只有當∠ABC=60°,AB=BC時,三角形模板繞點E順時針旋轉(zhuǎn)60°后,三個頂點仍在平行四邊形ABCD的邊上.∴要使該模板旋轉(zhuǎn)60°后,三個頂點仍在平行四邊形ABCD的邊上,平行四邊形ABCD的角和邊需要滿足的條件是:∠ABC=60°,AB=BC.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及平行四邊形的判定及性質(zhì),掌握平行四邊形的性質(zhì)及判定是解題的關鍵.23、(1)見解析;(2)5【分析】(1)根據(jù)相似三角形的判定方法即可求;(2)設,的面積為,由等腰三角形性質(zhì)和平行線分線段成比例,可求出,再根據(jù)的面積可以得出關于的函數(shù)關系式,由二次函數(shù)性質(zhì)可得的面積為最大時的值即可.【詳解】解:(1)證明:,,,,.(2)解:設,則,∵,,,∴,在Rt△ABG中,,∵∴,即,∴,,,即,的面積當?shù)拿娣e最大時,,即的長為.【點睛】本題考查相似三角形的判定和性質(zhì),三角形的面積公式,可利用數(shù)形結(jié)合思想根據(jù)題目提供的條件轉(zhuǎn)化為函數(shù)關系式.24、(1)k≤1;(2)k的值為-,另一個根為-2;(1)k的值為1或1.【分析】(1)根據(jù)一元二次方程根的判別式列不等式即可得答案;(2)根據(jù)一元二次方程根與系數(shù)的關系即可得答案;(1)由(1)可得k≤1,根據(jù)k為正整數(shù)可得k=1,k=2或k=1,分別代入方程,求出方程的根,根據(jù)該方程的根都是整數(shù)即可得答案.【詳解】(1)∵關于x的一元二次方程x2+2x+2k﹣5=0有兩個實數(shù)根,∴△=22﹣4×1×(2k﹣5)=﹣8k+24≥0,解得:k≤1,∴k的取值范圍是k≤1.(2)設方程的另一個根為m,∴4+m=-2,解得:m=-2,∴2k﹣5=4×(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論