下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),關于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)2.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.3.已知實數(shù),則下列說法正確的是()A. B.C. D.4.已知集合,集合,若,則()A. B. C. D.5.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.6.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.27.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或88.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.129.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.10.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.11.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.312.若復數(shù)滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,三條側棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.14.記數(shù)列的前項和為,已知,且.若,則實數(shù)的取值范圍為________.15.已知,滿足不等式組,則的取值范圍為________.16.設函數(shù),,其中.若存在唯一的整數(shù)使得,則實數(shù)的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,且.(1)求的最小值;(2)證明:.18.(12分)已知,,為正數(shù),且,證明:(1);(2).19.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.20.(12分)已知a>0,證明:1.21.(12分)已知函數(shù)的導函數(shù)的兩個零點為和.(1)求的單調區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.22.(10分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【題目詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【答案點睛】此題考查方程的根與函數(shù)零點問題,關鍵在于等價轉化,將問題轉化為通過導函數(shù)討論函數(shù)單調性解決問題.2.D【答案解析】
先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【題目詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【答案點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數(shù)形結合思想,以及推理與計算能力,屬于基礎題.3.C【答案解析】
利用不等式性質可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性判斷.【題目詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調遞增性質,即可得出.對于指數(shù)函數(shù)單調遞減性質,因此不成立.故選:.【答案點睛】利用不等式性質比較大小.要注意不等式性質成立的前提條件.解決此類問題除根據(jù)不等式的性質求解外,還經(jīng)常采用特殊值驗證的方法.4.A【答案解析】
根據(jù)或,驗證交集后求得的值.【題目詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【答案點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.5.C【答案解析】
根據(jù)題意知,,代入公式,求出即可.【題目詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【答案點睛】本題主要考查知識的遷移能力,把數(shù)學知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關性質來研究指數(shù)型函數(shù)的性質,以及解指數(shù)型方程;屬于中檔題.6.C【答案解析】
由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【題目詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【答案點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于中檔題.7.B【答案解析】
根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結果.【題目詳解】函數(shù),若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【答案點睛】本題考查的是三角函數(shù)的概念及性質和函數(shù)的對稱性問題,屬基礎題8.B【答案解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B9.A【答案解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【題目詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【答案點睛】本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、??碱}型.10.A【答案解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【題目詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【答案點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.11.C【答案解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【題目詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【答案點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯(lián)系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.12.D【答案解析】
利用復數(shù)模的計算、復數(shù)的除法化簡復數(shù),再根據(jù)復數(shù)的幾何意義,即可得答案;【題目詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【答案點睛】本題考查復數(shù)模的計算、復數(shù)的除法、復數(shù)的幾何意義,考查運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
設,可表示出,由三棱錐性質得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【題目詳解】設則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【答案點睛】本題考查三棱錐外接球表面積,解題關鍵是掌握三棱錐的性質:三條側棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側棱的平方和.14.【答案解析】
根據(jù)遞推公式,以及之間的關系,即可容易求得,再根據(jù)數(shù)列的單調性,求得其最大值,則參數(shù)的范圍可求.【題目詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項為3,公差為2的等差數(shù)列,所以,則.令,則.當時,,數(shù)列單調遞減,而,,,故,即實數(shù)的取值范圍為.故答案為:.【答案點睛】本題考查由遞推公式求數(shù)列的通項公式,涉及數(shù)列單調性的判斷,屬綜合困難題.15.【答案解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.16.【答案解析】
根據(jù)分段函數(shù)的解析式畫出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結合列出臨界條件滿足的關系式求解即可.【題目詳解】解:函數(shù),且畫出的圖象如下:因為,且存在唯一的整數(shù)使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數(shù)使得時,所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當時,恒成立.綜上所述,存在唯一的整數(shù)使得,此時故答案為:【答案點睛】本題主要考查了數(shù)形結合分析參數(shù)范圍的問題,需要根據(jù)題意分別分析定點右邊的整數(shù)點中為滿足條件的唯一整數(shù),再數(shù)形結合列出時的不等式求的范圍.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【答案解析】
(1)利用基本不等式即可求得最小值;(2)關鍵是配湊系數(shù),進而利用基本不等式得證.【題目詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【答案點睛】本題主要考查基本不等式的運用,屬于基礎題.18.(1)證明見解析;(2)證明見解析.【答案解析】
(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【題目詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【答案點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.19.(1)證明見解析;(2)證明見解析;【答案解析】
(1)推導出,由是的中點,能證明是有中點.(2)作于點,推導出平面,從而,由,能證明平面,由此能證明平面平面.【題目詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點,是有中點.(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【答案點睛】本題考查線段中點的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數(shù)形結合思想,屬于中檔題.20.證明見解析【答案解析】
利用分析法,證明a即可.【題目詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【答案點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.21.(1)單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)最大值是.【答案解析】
(1)求得,由題意可知和是函數(shù)的兩個零點,根據(jù)函數(shù)的符號變化可得出的符號變化,進而可得出函數(shù)的單調遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結論知,函數(shù)的極小值為,進而得出,解出、、的值,然后利用導數(shù)可求得函數(shù)在區(qū)間上的最大值.【題目詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程經(jīng)理合同范例
- 《木材加工產(chǎn)業(yè)發(fā)展制度創(chuàng)新研究》
- 合同修改采購版3篇
- 住家家庭護工家政合同3篇
- 全方位輔導合同3篇
- 勞動合同中的企業(yè)培訓與發(fā)展機會3篇
- 農(nóng)舍出售協(xié)議模板3篇
- 合同正副本封面3篇
- 冰球教練勞動合同范本3篇
- 全新勞務用工與勞動合同3篇
- 2022-2023學年廣東省廣州市越秀區(qū)六年級(上)期末數(shù)學試卷
- 2024保險行業(yè)人才趨勢報告(發(fā)布版)-31正式版
- 《儒林外史》專題復習課件(共70張課件)
- 2024年廣東省廣州市中考英語試卷附答案
- 企業(yè)財務報表分析-以順豐控股股份有限公司為例
- 2024年高考英語新課標1卷讀后續(xù)寫課件高考英語一輪復習作文專項
- 簡單室內裝修合同2024年
- 重慶江北國際機場有限公司招聘筆試題庫2024
- PANTONE國際色卡CMYK色值對照表3
- 精神康復中的心理危機干預策略考核試卷
- 第11講 地表形態(tài)與人類活動(高考一輪復習課件)
評論
0/150
提交評論