版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
FRM一級培訓(xùn)項目tative
ysis講師:金程教育資深培訓(xùn)師地點:
■
□
□【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義【夢軒考資
】tative
ysis1.
ProbabilityBasic
StatisticsDistributionsHypothesis
Tests
and
Confidence
IntervalsLinear
RegressionSimulation
ModelingEstimating
Volatilities
and
Correlations專業(yè)提供CFA
FRM全程+講義2-148If
A,B,C…are
mutually
exclusive
events,P
A
B
C
...
PA
PB
PC
...If
A,B,C,…are
mutually
exclusive
and
collectively
exhaustive
set
ofevents,PA
B
C
...
PA
PB
PC
...
1Generally,PA
B
PA
PB
PAB【夢軒考資
】ProbabilityProperties
of
Probabilities專業(yè)提供CFA
FRM全程+講義3-148Unconditional
probability:
P(A),
P(B)Conditional
probability:
P(A|B)【夢軒考資
】ProbabilityJoint
probability:
P(AB)
=
P(A)P(B|A)
=
P(B)P(A|B)PA|B
PAB
PBPAB
PA;
PB
0PB|A
; PA
0專業(yè)提供CFA
FRM全程+講義4-148Joint
probability:
P(AB)Multiplicationrule:P(AB)
=
P(A|B)×P(B)
=
P(B|A)×P(A)If
A
and
B
are
mutually
exclusive
events,
then:P(AB)
=
P(A|B)=
P(B|A)=
0Probability
that
at
least
one
of
two
events
will
occur:Addition
rule:P(A
or
B)
=
P(A)
+
P(B)
–
P(AB)If
A
and
B
are
mutually
exclusive
events,
then:P(A
or
B)
=
P(A)
+
P(B)【夢軒考資
】Probability專業(yè)提供CFA
FRM全程+講義5-148The
occurrence
of
A
has
no
influence
of
on
the
occurrence
of
BP(A|B)
=
P(A)
or
P(B|A)
=
P(B)P(AB)
=
P(A)×P(B)P(A
or
B)
=
P(A)
+
P(B)
–
P(AB)Independence
and
Mutually
Exclusive
are
quite
differentIf
exclusive,
must
not
independence;Cause
exclusive
means
if
A
occur,
B
can
not
occur,
A
influents
B.P(AB)
=
P(A)×P(B)【夢軒考資
】Probability專業(yè)提供CFA
FRM全程+講義6-148Probability
DistributionDescribe
the
probabilities
of
all
the
possiblevariable.Discrete
and
continuous
random
variablesDiscrete
random
variables:
the
number
of
possiblees
for
a
randomes
can
becounted,
and
for
each
possible e,
there
is
a
measurable
andpositive
probability.Continuous
variables:
the
number
of
possibleeven
if
lower
and
upper
bounds
exist.P(x)
=
0
even
though
x
can
occur.P
(x1<X<x2)es
is
infinite,【夢軒考資
】Probability專業(yè)提供CFA
FRM全程+講義7-148【夢軒考資
】ProbabilityProbability
function: p(x)
=
P(X=x)For
discrete
random
variables0
≤
p(x)
≤
1Σp(x)
=
1Probability
density
function
(p.d.f)
:
f(x)For
continuous
random
variable
commonlyCumulative
probability
function
(c.p.f)
:
F(x)Discrete:
(x)
=
P(X
≤x)Continuous:xf
uduF(x)
專業(yè)提供CFA
FRM全程+講義8-148ProbabilityF(x)1【夢軒考資
】Probabilityf(x)xx00baF(b)F(a)ba}P(a
X
b)
=
Area
under
f(x)between
a
and
b=
F(b)
-
F(a)P(a
X
b)=F(b)
-
F(a)專業(yè)提供CFA
FRM全程+講義9-148Properties
of
CDFF(-∞)
=
0
and
F(∞)
=
1F(X)
is
a
non-decreasing
function
such
that
if
x2
>
x1
then
F(x2)
≥
F(x1)P(X
≥
k)
=
1
–
F(k)P(x1
≤
X
≤
x2)
=
F(x2)
–
F(x1)Probability
MatrixSummarize
joint
probabilities
in
a
probability
matrix.Unconditional/marginal
probabilities
can
be
seen
by
adding
across
arow
or
down
a
column.【夢軒考資
】Probability專業(yè)提供CFA
FRM全程+講義10-148Consider
two
stocks.
Assume
that
both
Stock
S
and
Stock
T
caneach
only
reach
three
price
levels.
Stock
S
can
achieve:
$10,
$15,or
$20;
Stock
T
can
achieve:
$15,
$20,
or
$30.【夢軒考資
】ProbabilityExampleJoint
Probability: P(S=$20,
T=$30)
=
3/26Marginal/unconditional
probability: P(S
=
$20)
=
(2+3+3)/26
=
8/26Conditional
ProbabilityS=$10S=$15S=$20TotalT=$150224T=$2034310T=$3036312Total6128263
26
310
26
10PS
$20
T
$20
PS
$20,T
$20
PT
$20專業(yè)提供CFA
FRM全程+講義11-148Bayes’
TheoremExampleJohn
is
forecasting
a
stock’s
performance
in
2010
conditional
onthe
state
of
the
economy
of
the
country
in
which
the
firm
is
based.He
divides
the
economy’s
performance
into
three
categories
of“GOOD”,
“NEUTRAL”
and
“POOR”
and
the
stock’s
performanceinto
three
categories
of
“increase”,
“constant”
and
“decrease”.Estimate
the
probability
that
the
state
of
the
economy
is
NEUTRALgiven
that
the
stock
performance
is
constant.GoodNeutralPoorIncrease16%15%7.5%Constant2%6%7.5%Decrease2%9%35%38.5%15.5%46.0%20%
30%
50%
100%Pneutral
constant6%
38.71%15.5%PBPAB
PB
APA
PB
APA
PB
APA
PB
APA【夢軒考資
】Probability專業(yè)提供CFA
FRM全程+講義12-148ExerciseThe
following
is
a
probability
matrix
for
X
=
{1,
2,
3}
and
Y
=
{1,
2,
3}XYEach
of
the
following
is
true
except:X
and
Y
are
independentThe
Covariance
(X,Y)
is
non-zeroThe
probability
Y
=
3
conditional
on
X
=
1
is
10%The
unconditional
probability
that
X
=
2
is
50%.12316%15%9%212%30%18%32%5%3%【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義13-148ExerciseNext
year
the
economy
will
experience
one
of
three
states:
downturn,stable
state,
or
growth.
The
following
probability
matrix
is
as
follow:EconomyBondIf
we
observe
that
the
bond
has
defaulted,
what
is
the
probability
that
theeconomy
experienced
a
downturn?0.60%19.40%26.33%31.58%DownturnStableGrowthSurvive19.40%49.00%29.70%Default0.60%1.00%0.30%【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義14-148ExerciseThere
is
a
unconditional
probability
of
20%
that
the
Fed
will
initiate
QE4.If
the
Fed
announces
QE4,
then
ABC
hedge
fund
will
outperform
themarket
with
a
70%
probability.
If
the
fed
does
not
announce
QE
4,
thereis
only
a
40%
probability
that
ABC
will
outperform.
If
we
observe
thatABC
outperforms
the
market,
which
is
nearest
to
the
probability
that
theFed
announced
QE4?A.
20%B.28%C.30%D.42%【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義15-148概率條件概率和非條件概率(邊際概率)邊際概率與聯(lián)合概率之間的關(guān)系?概率矩陣的運用及
公式的計算?【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義16-148【夢軒考資
】tative
ysis1.
Probability2.
Basic
StatisticsDistributionsHypothesis
Tests
and
Confidence
IntervalsLinear
RegressionSimulation
ModelingEstimating
Volatilities
and
Correlations專業(yè)提供CFA
FRM全程+講義17-148【夢軒考資
】Expected
ValueExpected
Value:
A
Measure
of Central
TendencyProperties
of
Expected
Value1.
If
b
is
a
constant,
E(b)
=
b2.
E(X+Y)
=
E(X)
+
E(Y)3.
In
general,
E(XY)
≠
E(X)E(Y);
If
X
and
Y
are
independent
randomvariables,
then
E(XY)
=
E(X)E(Y)4.
E(X2)
≠
[E(X)]25.
If
a
is
a
constant,
E(aX)
=
aE(X)6.
If
a
and
b
are
constants,
then
E(aX+b)
=
aE(X)
+
E(b)
=
aE(X)
+
b專業(yè)提供CFA
FRM全程+講義18-148VariancexThe
positive
square
root
of ,
σ is
known
as
the
standard
deviation.2xAbove
formula
is
the
definition
of
variance.
To
compute
the
variance,we
use
the
following
formula:var
X
EX2
EX2
Variance:
a
Measure
of
Dispersion
–
the
second
momentThe
definition
of
variancek
22XXix
ii1222X2XE
X
E
X
2
variance
X
E
X
X
P
E
X
【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義19-148VarianceProperties
of
Variance1.
The
variance
of
a
constant
is
zero.
Bydefinition,a
constant
has
novariability.2.
If
X
and
Y
are
two
independent
random
variables,
thenvar(X+Y)
=
var(X)
+
var(Y)
and
var(X
–
Y)
=
var(X)
+
var(Y)3.
If
b
is
a
constant,
then:
var(X
+
b)
=
var(X)4.
If
a
is
constant,
then:
var(aX)
=
a2var(X)5.
If
a
and
b
are
constant,
then:
var(aX+b)
=
a2var(X)6.
If
X
and
Y
are
independent
random
variables
and
a
and
b
areconstants,
then
var(aX
+
bY)
=
a2var(X)
+
b2var(Y)7.
For
computational
convenience,
we
can
get:var(X)
=
E(X2)
-
[E(X)]2
,
thatEX2
x2
pxx【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義20-148【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程Sample
Mean
and
VarianceSample
MeanThe
sample
mean
of
a
r.v.
X
is
generally
denoted
by
the
symbolThe
sample
mean
is
known
as
an
estimator
of
E(X),
which
we
can
now
callthe
population
mean.An
estimate
of
the
population
is
simply
the
numerical
value
taken
by
anestimator.Sample
Variance,
which
wecan
now
call
the
population
variance.
The
sample
variance
is
defined
as
:If
the
sample
size
is
reasonably
large,
wecan
divide
by
n
instead
of
(n-1).The
expression
(n-1)
is
known
as
the
degrees
of
freedom.XX
and
isndefined
as
:
X
Xini1xS
(
the
positive
square
root
of
S2
),
is
called
the
sample
standarddeviation.2x
2xS2ii1X
X1n
1nxThe
sample
variance,
denoted
by
S2
which
is
an
estimator
of+講義21-148CovarianceCovariance
measures
how
one
random
variable
moves
with
anotherrandom
variable.Covariance
ranges
from
negative
infinity
to
positive
infinity.Properties
of
CovarianceIf
X
and
Y
are
independent
random
variables,
their
covariance
is
zero.If
X
and
Y
are
not
independent,
then:Cov
a
bX,
c
dY
b
d
Cov
X,YVar
X
Y
Var
X
Var
Y
2Cov
X,
YCov
X,
X
EX-
EX
X
-
EX
2
X
E
X
X
Y
Y
EXY
EXEY【夢軒考資
】CovarianceXYsXYi
iX
X
Y
Y
n
1
i11n專業(yè)提供CFA
FRM全程+講義22-148【夢軒考資
】Correlation
coefficientCorrelation
coefficientProperties
of
Correlation
coefficientCorrelation
measures
the
linear
relationship
between
two
randomvariables.Correlation
has
no
units,
ranges
from
–1
to
+1.If
two
variables
are
independent,
their
covariance
is
zero,
therefore,the
correlation
coefficient
will
be
zero.
The
converse,
however,
is
nottrue.
For
example,
Y
=
X2Variances
of
correlated
Variables.var
X
Y
var
X
var
Y
2x
yXYXYX
Y,
cov
X,Y
E
X
Y
X
YXYXYX
YsXYr
s
s
6454842
專業(yè)提供CFA
FRM全程+講義23-148【夢軒考資
】SkewnessSkewnessA
measure
of
asymmetry
of
a
PDFPositive
skewed:Mode<median<mean,
having
a
right
fat
tailNegative
skewed:Mode>media>mean,
having
a
left
fat
tailPositive-SkewedMode
Median
MeanNegative-SkewedMean
Median
ModeSymmetricMean
=
Median
=
Mode
3xxSymmetrical
and
nonsymmetrical
distributionsPositively
skewed
(right
skewed)
and
negatively
skewed(left
skewed)E
X
3S
專業(yè)提供CFA
FRM全程+講義24-148KurtosisKurtosisA
measure
of
tallness
or
flatness
of
a
PDFExcess
kurtosis
=
kurtosis
-
3
4x22xE
X
K
E
X
LeptokurticMesokurticPlatykurticKurtosis>3=3<3Excess
kurtosis>0=0<0Tails
(assuming
samevariation)Fat
tailnormalThin
tail【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義25-148LeptokurticNormalDistributionFat
tailKurtosis【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義26-148Provides
a
shorthand
method
for
specifying
a
cumulative
probabilitywithout
our
need
to
know
the
underlying
distribution
(conditional
on
afinite
variance).P(|X-μ|
≤
kσ)
≥
1
–
1/k2,k>1【夢軒考資
】Chebyshev’s
InequalityChebyshev’s
Inequality1
1221
14
3
475%1
1321
1
98
989%1
11
1
1594%421616AtleastLiewithinStandard
deviationsof
the
mean2346454842
專業(yè)提供CFA
FRM全程+講義27-148ExerciseA
model
of
the
frequency
of
losses
(L)
per
day
assumes
the
followingdiscrete
distribution:
zero
loss
with
probability
of
20%;
one
loss
withprobability
of
30%;
two
losses
with
probability
of
30%;
three
losses
withprobability
of
10%;
and
four
losses
with
probability
of
10%.
What
are,respectively,
the
expected
number
of
loss
events
and
the
standarddeviation
of
the
number
of
loss
events?E(L)
=
1.2
and
σ
=
1.44E(L)
=
1.6
and
σ
=
1.20E(L)
=
1.8
and
σ
=
2.33E(L)
=
2.2
and
σ
=
9.60【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義28-148ExerciseAn
yst
is
concerned
with
the
symmetry
and
peakedness
of
adistribution
of
returns
over
a
period
of
time
for
a
company
she
isexamining.
She
does
some
calculations
and
finds
that
the
median
returnis
4.2%,
the
mean
return
is
3.7%,
and
the
mode
return
is
4.8%.
She
alsofinds
that
the
measure
of
kurtosis
is
2.
Based
on
this
information,
thecorrect
characterization
of
the
distribution
of
return
over
time
is:SkewnessPositivePositiveKurtosisLeptokurticPlatykurticC.
Negative
PlatykurticD.
Negative
Leptokurtic【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義29-148ExerciseUsing
Chebyshev’s
inequality,
what
is
the
proportion
of
observationsfrom
a
population
of
250
that
must
lie
within
three
standard
deviations
ofthe
mean,
regardless
of
the
shape
of
the
distribution?A.
75%B.99%C.
89%D.
54%【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義30-148【夢軒考資
】統(tǒng)計學(xué)基礎(chǔ)均值、方差、協(xié)方差、相關(guān)系數(shù)計算?組合方差/波動率計算?偏度的基本性質(zhì)及分類?峰度的基本性質(zhì)及分類?契比雪夫不等式計算?專業(yè)提供CFA
FRM全程+講義31-148【夢軒考資
】tative
ysisProbabilityBasic
Statistics3.
DistributionsHypothesis
Tests
and
Confidence
IntervalsLinear
RegressionSimulation
ModelingEstimating
Volatilities
and
Correlations專業(yè)提供CFA
FRM全程+講義32-148Discrete
Probability
DistributionBinomial
DistributionBernoulli
Random
VariableP(Y
=
1)
=
pP(Y
=
0)
=
1
–
pBinomial
random
variable
the
probability
of
x
successes
in
n
trailsExpectations
and
variances
x
xnnxp
x
P X
x
C
p 1
ppx
1
pnxn!x!n
x!ExpectationVarianceBernoulli
random
variable
(Y)pp(1
–
p)Binomial
random
variable
(X)npnp(1
–
p)【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義33-148Discrete
Probability
DistributionPoisson
DistributionWhen
there
are
a
large
number
of
trials
but
a
small
probability
ofsuccess,
binomial
calculations e
impractical.If
we
substitute
λ/n
for
p,
and
let
n
very
large,
the
binomial
distributionλ
indicates
the
rate
of
occurrence
of
the
random
events;
i.e.,
it
lsus
how
many
events
occur
o age
per
unit
of
time.
es
thepPokissoPndXistribkution.ke
,
npk!【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義34-148【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程Continuous
Probability
DistributionContinuous
Uniform
DistributionProbability
density
functionCumulative
distribution
function1a
x
botherwise,,f
x
b
a
0Fx
x
a
,b
a0
,
for x
afor a
x
b
1, for
x
bab+講義35-148Some
Important
Probability
DistributionsProperties
of
Continuous
Uniform
DistributionE(X)
=
(a
+
b)/2Var(X)
=
(b
–
a)2/12For
all
a
≤
x1
<
x2
≤
b,
we
have:x
2Px1
X
x2
f
xdx
x2
x1
/
b
ax1【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義36-148Continuous
Probability
DistributionNormal
DistributionX~N(μ,
σ2),
fully
described
by
its
two
parameters
μ
and
σ2.Bell-shaped,
symmetrical
distribution:
skewness
=
0,
kurtosis
=
3.A
linear
combination
(function)
of
two
(or
more)
normally
distributionrandom
variables
is
itself
normally
distributed.f
x
x2221e
2【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義37-148Continuous
Probability
Distribution90%95%99%
+
1.65
+
2.58
+
1.96The
confidence
intervalsApproximaApproximaApproximaApproximay
68%
of
all
observations
fall
in
the
interval
μ
±σy
90%
of
all
observations
fall
in
the
interval
μ
±
1.65σy
95%
of
all
observations
fall
in
the
interval
μ
±
1.96σy
99%
of
all
observations
fall
in
the
interval
μ
±
2.58σX
~
N(μ
,
σ2)
-2.58
-
1.65
-1.96【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義38-148Continuous
Probability
DistributionStandard
Normal
DistributionThe
standard
normal
distribution
is
the
normal
distribution
withmean
=
0
and
variance
2
=
1.If
X~N(μ,
σ2),
thenCritical
Z
ValuesExampleX
~
N(70,
9),
compute
the
probability
of
X
≥
75.9Z
=
(75.9
–
70)/3
=
1.96,
P(X
≥
75.9)
=
1
–
97.5%
=
2.5%Compute
64.12
≤
X
≤
75.9;
64.12
≥
X
and
X
≥
75.9?Z
X
~
N0,1Critical
Z
ValueTwo-Side
ConfidenceOne-Sided
Confidence1.64590%95%1.9695%97.5%2.3398%99%2.5899%99.5%【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義39-148Continuous
Probability
DistributionHow
to
usethe
Z-table【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義40-148Continuous
Probability
DistributionStudent’s
t
distributionIt
is
similar
to
the
normal,
except
it
exhibits
slightly
heavier
tails.It
is
symmetricalIt
has
mean
of
zero.As the
d.f.
increase,
the
t-distribution
converges
with
the
standardnormal
distribution.t
X
Xsx
nBoth
the
normal
and
student’s
t
distribution
characterize
the
samplingdistribution
of
the
sample
mean.
The
difference
is
that
the
normal
is
used
when
we
know
the
population
variance.
The
student’s
t
is
used
when
we
must
rely
on
the
sample
variance.
In
practice,
we
don’t
knowthe
population
variance,
so
the
student’s
t
is
typically
appropriate.【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義41-148Continuous
Probability
DistributionLognormal
DistributionThe
Black-Scholes
Model
assumes
that
the
price
of
the
underlyingasset
is
lognormally
distributed.If
lnX
is
normal,
then
X
is
lognormal;
if
a
variable
is
lognormal,
its
natural
log
is
normal.It
is
useful
for
modeling
asset
priceswhich
never
take
negative
values.Right
skewed.Bounded
from
below
by
zero.【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程+講義42-148+講義【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程Continuous
Probability
DistributionThe
Chi-Square
(χ2)
Probability
DistributionThe
chi-square
test
statistic,
χ2,
with
n-1
degrees
of
freedom,
iscomputed
as:Notice2i(k
)~
2Z
Z2
Z2
Z21
2
kn120n
1s22df=3043-148Properties
of
the
Chi-Square
DistributionThe
chi-square
distribution
take
only
positive
value
and
ranges
from
0
toinfinity
(after
all,
it
is
the
distribution
of
a
squared
ty).The
chi-square
distribution
is
a
positive
skewed
distribution,
the
degree
of
theskewness
depending
on
the
d.f.For
comparatively
few
d.f.
the
distribution
is
highly
skewed
to
the
right,
butas
the
d.f.
increase,
the
distributionand
approaches
the
normal
distribution.E(X)=
k,
D(X)=2k,
where
k
is
the
d.f.es
increasingly
symmetricalIf
Z1
and
Z2
are
two
independent
chi-square
variables
with
k1
and
k2
d.f.,
thentheir
sum
(Z1
+
Z2
)
is
also
a
chi-square
variable
with
d.f.=(k1
+
k2
).【夢軒考資
】
6454842Chi-Square
Distribution專業(yè)提供CFA
FRM全程+講義44-148Continuous
Probability
DistributionF-DistributionIf
U1
and
U2
are
two
independentchi-squareddistributionswith
k1
andk2
degrees
of
freedom,
respectively,
then
X:follows
an
F-distribution
with
parameters
K1
and
K2.As
d.f.
increase,
approaches
normal.The
F
distribution
is
also
called
the
variance
ratio
distribution.
The
Fratio
is
the
ratio
of
sample
variances,
with
the
greater
sample
variancein
the
numerator:1
2~
Fk
,k
2
2k1U
kX
U1Ys2s2F
X【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義45-148ExerciseOn
a
multiple
choice
exam
with
four
choices
for
each
of
six
questions,what
is
the
probability
that
a
student
gets
less
than
two
questions
correctsimply
by
guessing?0.46%23.73%35.60%53.39%【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義46-148ExerciseAssume
random
variance
is
normally
distributed
with
mean
of
10
and
avariance
of
25.
Without
using
a
calculator,
what
is
the
probability
that
Xfalls
within
1.75
and
21.65?68%94%95%99%【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義47-148ExerciseAssume
a
99%
daily
VaR
model
is
perfectly
accurate.
Specifically,
among
100days,
we
expect
a
loss
that
exceeds
VaR
on
exactly
one
day.
Using
a
binomialdistribution,
over
a
series
of
20
trading
days,
which
is
nearest
to
the
probabilitythat
the
daily
loss
will
exceed
VaR
on
exactly
two
days?0.44%0.93%1.59%2.36%The
frequency
of
an
operational
risk
event
type
–
damage
to
physical
assets
–
ischaracterized
by
a
Poisson
distribution.
Over
a age
year,
a
companyexpects
36
of
these
particular
loss
events.
During
the
next
month,
which
isnearest
to
the
probability
the
company
will
experience
exactly
zero
of
theseevents?3.4%5.0%C.
7.5%D.
9.1%【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義48-148ExerciseAssume
the
population
of
hedge
fund
returns
has
an
unknown
distribution
withmean
of
8%
and
volatility
of
10%.
From
a
sample
of
40
funds,
what
is
theprobability
the
sample
mean
return
will
exceed
10.6%?5%8%10%12%Which
of
the
followingexhibit
positively
skewed
distributions?Normal
DistributionLognormal
DistributionThe
Returns
of
Being
Short
a
Put
OptionThe
Returns
of
Being
Long
a
Call
OptionII.onlyIII.onlyII
and
IV
onlyI,
III,
and
IVonly【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義49-148ExerciseWhich
of
the
following
statements
best
characterizes
the
relationshipbetween
the
normal
and
lognormal
distributions?The
lognormal
distribution
is
the
logarithm
of
the
normal
distribution.If
the
natural
log
of
the
random
variable
X
is
lognormally
distributed,then
X
is
normally
distributed.If
X
is
lognormally
distributed,
then
the
natural
log
of
X
is
normally
distributed.The
two
distributions
have
nothing to
do
with
one
another.【夢軒考資
】
6454842
專業(yè)提供CFA
FRM全程
+講義50-148【夢軒考資
】概率與分布常用離散概率分布:二項式分布與泊松分布基本特征與計算?常見連續(xù)概率分布:正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布基本特征與計算?其他常見分布的基本特征(Student’s
t
distribution;Lognormal
distribution;Chi-Squared
Distribution;
F-distribution)專業(yè)提供CFA
FRM全程+講義51-148【夢軒考資
】tative
ysisProbabilityBasic
StatisticsDistributions4.
Hypothesis
Tests
and
Confidence
IntervalsLinear
RegressionSimulation
ModelingEstimating
Volatilities
and
Correlations專業(yè)提供CFA
FRM全程+講義52-148FrameSampling
and
EstimationPoint
Estimation、Confidence
Interval
EstimateBest
Linear
Unbiased
Estimator
(BLUE)Hypothesis
TestsThe
basis
of
HypothesisThe
application
of
HypothesisTest
of
Single
Population
MeanTest
of
Single
Population
VarianceTest
of
Variances
Difference【夢軒考資
】6454842
專業(yè)提供CFA
FRM全程+講義53-148Statistical
Inference:
Estimation
and
Hypo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新進(jìn)員工質(zhì)量意識培訓(xùn)
- 信用社人力資源新工培訓(xùn)
- 數(shù)控車削加工技術(shù) 課件 項目二 制定數(shù)控車削工藝
- 山東省淄博市第一中學(xué)2024-2025學(xué)年高三上學(xué)期期中考試語文試卷含答案
- T-YNZYC 0079-2023 綠色藥材 蜘蛛香栽培技術(shù)規(guī)程
- T-YNRZ 025-2024 瓜類蔬菜育苗技術(shù)規(guī)程
- 廣西桂林市永??h2024-2025學(xué)年上學(xué)期八年級數(shù)學(xué)期中考試卷(無答案)
- 區(qū)域經(jīng)濟(jì)發(fā)展
- 高考?xì)v史二輪復(fù)習(xí)通史版選修四中外歷史人物評說課
- 2024年山東省臨沂市中考英語試題含解析
- 人教版七年級數(shù)學(xué)上冊期中測試卷-附帶有答案
- DB3714-T 0004-2021 肉種鴨強制換羽技術(shù)規(guī)程
- 《智能建造導(dǎo)論》 課件全套 劉占省 第1-12章 智能建造的興起-中國智能建造之路
- 樹立信心主題班會課件1
- 臨床醫(yī)學(xué)中的病患隨訪與健康教育
- 量子天線技術(shù)初探
- 山東省濟(jì)南市2023-2024學(xué)年三年級上學(xué)期期中數(shù)學(xué)試卷
- 2023~2024學(xué)年度上期高中2022級期中聯(lián)考數(shù)學(xué)參考答案及評分標(biāo)準(zhǔn)
- 全國優(yōu)質(zhì)課一等獎高中物理必修一《曲線運動》課件
- 初一年級班級日志記載表(詳)
- 小學(xué)道德與法治-10《吃飯有講究》教學(xué)設(shè)計學(xué)情分析教材分析課后反思
評論
0/150
提交評論