2019屆高考數(shù)學專習題五導數(shù)應(yīng)用精準培優(yōu)專練理_第1頁
2019屆高考數(shù)學專習題五導數(shù)應(yīng)用精準培優(yōu)專練理_第2頁
2019屆高考數(shù)學專習題五導數(shù)應(yīng)用精準培優(yōu)專練理_第3頁
2019屆高考數(shù)學專習題五導數(shù)應(yīng)用精準培優(yōu)專練理_第4頁
2019屆高考數(shù)學專習題五導數(shù)應(yīng)用精準培優(yōu)專練理_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021屆高考數(shù)學專習題五導數(shù)應(yīng)用精確培優(yōu)專練理2021屆高考數(shù)學專習題五導數(shù)應(yīng)用精確培優(yōu)專練理2021屆高考數(shù)學專習題五導數(shù)應(yīng)用精確培優(yōu)專練理培長處五導數(shù)的應(yīng)用1.利用導數(shù)判斷單一性例1:求函數(shù)的單一區(qū)間【答案】看法析【分析】第一步:先確立定義域,定義域為,第二步:求導:,第三步:令,即,第四步:辦理恒正恒負的因式,可得,第五步:求解,列出表格2.函數(shù)的極值例2:求函數(shù)的極值.【答案】的極大值為,無極小值【分析】令解得:,的單一區(qū)間為:的極大值為,無極小值.3.利用導數(shù)判斷函數(shù)的最值例3:函數(shù)在區(qū)間上獲得最小值4,那么___________.【答案】【分析】思路一:函數(shù)的定義域為,.當時,,當時,,為增函數(shù),所以,,矛盾舍去;當時,假定,,為減函數(shù),假定,,為增函數(shù),所以為極小值,也是最小值;①當,即時,在上單一遞加,所以,所以〔矛盾〕;②當,即時,在上單一遞減,,所以;③當,即時,在上的最小值為,此時〔矛盾〕.綜上.思路二:,令導數(shù),考慮最小值點只有可能在界限點與極值點處獲得,所以可假定,,分別為函數(shù)的最小值點,求出后再查驗即可.對點增分集訓一、單項選擇題1.函數(shù)的單一遞減區(qū)間為〔〕A.B.C.D.【答案】A【分析】函數(shù)的導數(shù)為,令,得,∴聯(lián)合函數(shù)的定義域,合適時,函數(shù)為單一減函數(shù).所以,函數(shù)的單一遞減區(qū)間是.故選A.2.假定是函數(shù)的極值點,那么〔〕A.有極大值B.有極小值C.有極大值0D.有極小值0【答案】A【分析】因為是函數(shù)的極值點,所以,,,.當時,;當時,,所以有極大值,應(yīng)選A.3.函數(shù)在上單一遞減,且在區(qū)間上既有最大值,又有最小值,那么實數(shù)的取值范圍是〔〕A.B.C.D.【答案】C【分析】因為函數(shù)在上單一遞減,所以關(guān)于全部恒建立,得,,又因為在區(qū)間上既有最大值,又有最小值,所以,可知在上有零點,也就是極值點,即有解,在上解得,可得,,應(yīng)選C.4.函數(shù)是上的單.調(diào).函.數(shù).,那么的范圍是〔〕A.B.C.D.【答案】C【分析】假定函數(shù)是上的單一函數(shù),只需恒建立,即,.應(yīng)選C.5.遇到你的那一刻,我的心電圖就如函數(shù)的圖象大概為〔〕A.B.C.D.【答案】A【分析】由,其定義域為,即,,那么函數(shù)為奇函數(shù),故除去C、D,,那么函數(shù)在定義域內(nèi)單一遞減,除去B,應(yīng)選A.6.函數(shù)在內(nèi)存在極值點,那么〔〕A.B.C.或D.或【答案】A【分析】假定函數(shù)在無極值點,那么或在恒建立.①當在恒建立刻,時,,得;時,,得;②當在恒建立刻,那么且,得;綜上,無極值時或.∴在在存在極值.應(yīng)選A.7.,,假定函數(shù)在區(qū)間上單一遞減,那么實數(shù)的取值范圍是〔〕A.或B.或C.或D.或【答案】D【分析】因為,函數(shù)在區(qū)間上單一遞減,所以在區(qū)間上恒建立,只需,即解得或,應(yīng)選D.8.函數(shù)在定義域內(nèi)可導,其圖像以以下列圖.記的導函數(shù)為,那么不等式的解集為〔〕A.B.C.D.【答案】A【分析】由圖象知和上遞減,所以的解集為.應(yīng)選A.9.設(shè)函數(shù),那么〔〕A.在區(qū)間,內(nèi)均有零點B.在區(qū)間,內(nèi)均無零點C.在區(qū)間內(nèi)有零點,在區(qū)間內(nèi)無零點D.在區(qū)間內(nèi)無零點,在區(qū)間內(nèi)有零點【答案】D【分析】的定義域為,在單一遞減,單一遞加,,當在區(qū)間上時,在其上單一,,,故在區(qū)間上無零點,當在區(qū)間上時,在其上單一,,,故在區(qū)間上有零點.應(yīng)選D.10.假定函數(shù)既有極大值又有極小值,那么實數(shù)的取值范圍為〔〕A.B.C.或D.或【答案】D【分析】,,函數(shù)既有極大值又有極小值,有兩個不等的實數(shù)根,,,那么或,應(yīng)選D.11.函數(shù)的兩個極值點分別在與內(nèi),那么的取值范圍是〔〕A.B.C.D.【答案】A【分析】由函數(shù),求導,的兩個極值點分別在區(qū)間與內(nèi),由的兩個根分別在區(qū)間與內(nèi),,令,轉(zhuǎn)變?yōu)樵诰惺鴹l件為時,求的取值范圍,可行域以下暗影〔不包含界限〕,目標函數(shù)轉(zhuǎn)變?yōu)椋蓤D可知,在處獲得最大值,在處獲得最小值,可行域不包含界限,的取值范圍.本題選擇A選項.12.設(shè)函數(shù)在區(qū)間上的導函數(shù)為,在區(qū)間上的導函數(shù)為,假定在區(qū)間上,那么稱函數(shù)在區(qū)間上為“凹函數(shù)〞,在區(qū)間上為“凹函數(shù)〞,那么實數(shù)的取值范圍為〔〕A.B.C.D.【答案】D【分析】∵,∴,∴,∵函數(shù)在區(qū)間上為“凹函數(shù)〞∴,∴在上恒建立,即在上恒建立.∵在上為單一增函數(shù),∴,∴,應(yīng)選D.二、填空題13.函數(shù)在區(qū)間上的最大值是___________.【答案】8【分析】,,當或時,,在該區(qū)間是增函數(shù),當時,,在該區(qū)間是減函數(shù),故函數(shù)在處取極大值,,又,故的最大值是8.14.假定函數(shù)在,上都是單一增函數(shù),那么實數(shù)的取值會合是______.【答案】【分析】,,函數(shù)在,上都是單一增函數(shù),那么,即,解得,,即,解得,那么實數(shù)的取值會合是,故答案為.15.函數(shù)在內(nèi)不存在極值點,那么的取值范圍是___________.【答案】或【分析】函數(shù)在內(nèi)不存在極值點在內(nèi)單一函數(shù)或在內(nèi)恒建立,由在內(nèi)恒建立,,即,同理可得,故答案為或.16.函數(shù),①當時,有最大值;②關(guān)于隨意的,函數(shù)是上的增函數(shù);③關(guān)于隨意的,函數(shù)必定存在最小值;④關(guān)于隨意的,都有.此中正確結(jié)論的序號是_________.〔寫出全部正確結(jié)論的序號〕【答案】②③【分析】由函數(shù)的分析式可得:,當時,,,單一遞增,且,據(jù)此可知當時,,單一遞加,函數(shù)沒有最大值,說法①錯誤;當時,函數(shù),均為單一遞加函數(shù),那么函數(shù)是上的增函數(shù),說法②正確;當時,單一遞加,且,且當,據(jù)此可知存在,在區(qū)間上,,單一遞減;在區(qū)間上,,單一遞加;函數(shù)在處獲得最小值,說法③正確;當時,,因為,故,,說法④錯誤;綜上可得:正確結(jié)論的序號是②③.三、解答題17.函數(shù)〔1〕討論函數(shù)在上的單一性;〔2〕證明:恒建立.【答案】〔1〕當時,在上單一遞加;當時,在上單一遞加,在上單一遞減;〔2〕看法析.【分析】〔1〕,當時,恒建立,所以,在上單一遞加;當時,令,獲得,所以,當時,,單一遞加,當時,,單一遞減.綜上所述,當時,在上單一遞加;當時,在上單一遞加,在上單調(diào)遞減.〔2〕證法一:由〔1〕可知,當時,,特別地,取,有,即,所以〔當且僅當時等號建立〕,所以,要證恒建立,只需證明在上恒成立刻可,設(shè),那么,當時,,單一遞減,當時,,單一遞加.所以,當時,,即在上恒建立.所以,有,又因為兩個等號不可以同時建立,所以有恒建立.證法二:記函數(shù),那么,可知在上單一遞加,又由,知,在上有獨一實根,且,那么,即〔*〕,當時,,單一遞減;當時,,單一遞加,所以,聯(lián)合〔*〕式,知,所以,那么,即,所以有恒建立.18.函數(shù),其導函數(shù)為.〔1〕當時,假定函數(shù)在上有且只有一個零點,務(wù)實數(shù)的取值范圍;〔2〕設(shè),點是曲線上的一個定點,能否存在實數(shù)使得建立?并證明你的結(jié)論.【答案】〔1〕或;〔2〕不存在,看法析.【分析】〔1〕當時,,,,,由題意得,即,令,那么,解得,當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論