版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大2.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.63.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.4.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°5.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.136.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π7.在實數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣48.小張同學制作了四張材質和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應的書名和作者姓名的概率是()A. B. C. D.9.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數(shù)是()A. B. C. D.10.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.12.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)13.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為__________.14.不等式5x﹣3<3x+5的非負整數(shù)解是_____.15.如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是___.16.用正三角形、正四邊形和正六邊形按如圖所示的規(guī)律拼圖案,即從第二個圖案開始,每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個,則第n個圖案中正三角形的個數(shù)為(用含n的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)如圖,直角△ABC內(nèi)接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結PO交⊙O于點F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長.18.(8分)平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.(1)設a=2,點B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;(3)設m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.19.(8分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點P從點A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點C運動,過點P作PQ⊥AB,交折線AD﹣DC于點Q,將線段PQ繞點P順時針旋轉90°,得到線段PR,連接QR.設△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).(1)當點R與點B重合時,求t的值;(2)當點P在BC邊上運動時,求線段PQ的長(用含有t的代數(shù)式表示);(3)當點R落在?ABCD的外部時,求S與t的函數(shù)關系式;(4)直接寫出點P運動過程中,△PCD是等腰三角形時所有的t值.20.(8分)某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關系如圖所示.(1)求與的函數(shù)關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.21.(8分)先化簡,再求值:,其中,.22.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.23.(12分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.24.如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計圖,如圖2為該網(wǎng)站本周學生日訪問量占日訪問總量的百分比統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息完成下列填空:這一周訪問該網(wǎng)站一共有萬人次;周日學生訪問該網(wǎng)站有萬人次;周六到周日學生訪問該網(wǎng)站的日平均增長率為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.2、B【解析】
先根據(jù)矩形的特點設出B、C的坐標,根據(jù)矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.3、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.4、B【解析】
延長AC交DE于點F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;
②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.5、A【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.6、A【解析】
根據(jù)圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點睛】本題考查的知識點是扇形面積的計算,解題關鍵是利用圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°.7、C【解析】
根據(jù)實數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點睛】本題主要考查了實數(shù)的大小比較,解本題的要點在于統(tǒng)一根據(jù)二次根式的性質,把根號外的移到根號內(nèi),只需比較被開方數(shù)的大小.8、D【解析】
根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對應的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對應的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應的書名和作者姓名的概率是=;故選D.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【解析】
連接OB,由切線的性質可得,由鄰補角相等和四邊形的內(nèi)角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內(nèi)角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內(nèi)角和,解題的關鍵是靈活運用有關定理和性質來分析解答.10、D【解析】
連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規(guī)則圖形的面積轉化為求規(guī)則圖形的面積.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點:等腰直角三角形;平行線的性質.12、①②④【解析】
由正方形的性質和相似三角形的判定與性質,即可得出結論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點睛】本題考查的正方形的性質,等邊三角形的性質以及相似三角形的判定和性質,解答此題的關鍵是熟練掌握性質和定理.13、6【解析】
利用正方形的性質和勾股定理可得AC的長,由角平分線的性質和平行線的性質可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=614、0,1,2,1【解析】5x﹣1<1x+5,移項得,5x﹣1x<5+1,合并同類項得,2x<8,系數(shù)化為1得,x<4所以不等式的非負整數(shù)解為0,1,2,1;故答案為0,1,2,1.【點睛】根據(jù)不等式的基本性質正確解不等式,求出解集是解答本題的關鍵.15、12【解析】
根據(jù)圖象可知點P在BC上運動時,此時BP不斷增大,而從C向A運動時,BP先變小后變大,從而可求出線段長度解答.【詳解】根據(jù)題意觀察圖象可得BC=5,點P在AC上運動時,BPAC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BPAC時BP=4,又勾股定理求得CP=3,因點P從點C運動到點A,根據(jù)函數(shù)的對稱性可得CP=AP=3,所以的面積是=12.【點睛】本題考查動點問題的函數(shù)圖象,解題的關鍵是注意結合圖象求出線段的長度,本題屬于中等題型.16、4n+1【解析】
分析可知規(guī)律是每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個.【詳解】解:第一個圖案正三角形個數(shù)為6=1+4;第二個圖案正三角形個數(shù)為1+4+4=1+1×4;第三個圖案正三角形個數(shù)為1+1×4+4=1+3×4;…;第n個圖案正三角形個數(shù)為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點:規(guī)律型:圖形的變化類.三、解答題(共8題,共72分)17、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長PO交圓于G點,由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長PO交圓于G點,∵PF×PG=PC考點:切線的判定;切割線定理.18、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解析】分析:(1)由已知代入點坐標即可;(2)面積問題可以轉化為△AOB面積,用a、k表示面積問題可解;(3)設出點A、A′坐標,依次表示AD、AF及點P坐標.詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標為(2,4),A′坐標為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,∵O為AA′中點,S△AOB=S△AOA′=8∵點A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點A、B坐標都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y(tǒng)=,得:﹣,∴n=,∴A′B解析式為y=﹣.當x=a時,點D縱坐標為,∴AD=∵AD=AF,∴點F和點P橫坐標為,∴點P縱坐標為.∴點P在y1═(x>0)的圖象上.點睛:本題綜合考查反比例函數(shù)、一次函數(shù)圖象及其性質,解答過程中,涉及到了面積轉化方法、待定系數(shù)法和數(shù)形結合思想.19、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】
(1)根據(jù)題意點R與點B重合時t+t=3,即可求出t的值;(2)根據(jù)題意運用t表示出PQ即可;(3)當點R落在□ABCD的外部時可得出t的取值范圍,再根據(jù)等量關系列出函數(shù)關系式;(3)根據(jù)等腰三角形的性質即可得出結論.【詳解】解:(1)∵將線段PQ繞點P順時針旋轉90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當運動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點R與點B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當點P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當DC=DP1=3時,易知AP1=3,t=3.②當DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當CD=CP3時,t=4.④當CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點睛】本題考查四邊形綜合題、動點問題、平行四邊形的性質、多邊形的面積、等腰三角形的判定和性質等知識,解題的關鍵是學會用分類討論的思想解決問題,學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.20、(1)();(2)定價為19元時,利潤最大,最大利潤是1210元.(3)不能銷售完這批蜜柚.【解析】【分析】(1)根據(jù)圖象利用待定系數(shù)法可求得函數(shù)解析式,再根據(jù)蜜柚銷售不會虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據(jù)利潤=每千克的利潤×銷售量,可得關于x的二次函數(shù),利用二次函數(shù)的性質即可求得;(3)先計算出每天的銷量,然后計算出40天銷售總量,進行對比即可得.【詳解】(1)設,將點(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會虧本,∴,又,∴,∴,∴;(2)設利潤為元,則==,∴當時,最大為1210,∴定價為19元時,利潤最大,最大利潤是1210元;(3)當時,,110×40=4400<4800,∴不能銷售完這批蜜柚.【點睛】本題考查了一次函數(shù)的應用、二次函數(shù)的應用,弄清題意,找出數(shù)量間的關系列出函數(shù)解析式是解題的關鍵.21、9【解析】
根據(jù)完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】當,時,原式【點睛】本題考查整式的化簡求值,解答本題的關鍵是明確整式化簡求值的方法.22、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據(jù)等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度產(chǎn)業(yè)園企業(yè)入駐產(chǎn)業(yè)園區(qū)品牌形象設計合作協(xié)議4篇
- 2025年度產(chǎn)品陳列效果評估與市場反饋協(xié)議4篇
- 臨時活動板房建設標準化協(xié)議樣本版B版
- 個人信用擔保協(xié)議:2024年專屬貸款保障協(xié)議一
- 個人與健身俱樂部會員服務合同20245篇
- 2024藝術品買賣合同具體描述了書畫作品的交易細節(jié)
- 2024版全新房屋買賣車位協(xié)議下載
- 2024施工員勞務聘用合同
- 2024版云端服務器購買協(xié)議范例版B版
- 2025年度產(chǎn)權明確車位租賃合同糾紛調解員服務合同4篇
- 廣東省佛山市2025屆高三高中教學質量檢測 (一)化學試題(含答案)
- 《國有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護管理方案
- 人教版【初中數(shù)學】知識點總結-全面+九年級上冊數(shù)學全冊教案
- 食品安全分享
- 礦山機械設備安全管理制度
- 計算機等級考試二級WPS Office高級應用與設計試題及答案指導(2025年)
- 造價框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 心衰患者的個案護理
- 醫(yī)護人員禮儀培訓
評論
0/150
提交評論