版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠02.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O43.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關系是()A.在⊙O內B.在⊙O上C.在⊙O外D.不能確定4.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2895.已知,C是線段AB的黃金分割點,AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)6.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+17.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°8.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=29.某同學將自己7次體育測試成績(單位:分)繪制成折線統(tǒng)計圖,則該同學7次測試成績的眾數(shù)和中位數(shù)分別是()A.50和48 B.50和47 C.48和48 D.48和4310.如圖所示的正方體的展開圖是()A. B. C. D.11.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)12.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若x,y為實數(shù),y=,則4y﹣3x的平方根是____.14.若一個棱柱有7個面,則它是______棱柱.15.在一次射擊比賽中,某運動員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出_____環(huán)的成績.16.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.17.如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為.18.圓柱的底面半徑為1,母線長為2,則它的側面積為_____.(結果保留π)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)關于x的一元二次方程ax2+bx+1=1.當b=a+2時,利用根的判別式判斷方程根的情況;若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.20.(6分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機抽取該校九年級若干名男生,調查他們的跳繩成績(次/分),按成績分成,,,,五個等級.將所得數(shù)據(jù)繪制成如下統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數(shù)分布直方圖(1)本次調查中,男生的跳繩成績的中位數(shù)在________等級;(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是等級的人數(shù).21.(6分)下面是一位同學的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結,過點B作,交于點D.所以:線段________就是所求的線段x.①試將結論補完整②這位同學作圖的依據(jù)是________③如果,,,試用向量表示向量.22.(8分)如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))數(shù)軸上點B對應的數(shù)是______.經(jīng)過幾秒,點M、點N分別到原點O的距離相等?23.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.24.(10分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.25.(10分)先化簡,再求值:,其中x=-1.26.(12分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?27.(12分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.2、A【解析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.3、B.【解析】試題解析:∵OP=5,∴根據(jù)點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關系;2.坐標與圖形性質.4、D【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數(shù)形結合思想與分類討論思想的應用,小心別漏解.5、C【解析】
根據(jù)黃金分割點的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點,且AC<BC,BC為較長線段;
則BC=2×=-1.
故答案為:-1.【點睛】本題考查了黃金分割,應該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.6、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.7、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算8、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.9、A【解析】
由折線統(tǒng)計圖,可得該同學7次體育測試成績,進而求出眾數(shù)和中位數(shù)即可.【詳解】由折線統(tǒng)計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數(shù)為50,中位數(shù)為48,故選:A.【點睛】本題考查了眾數(shù)和中位數(shù),解題的關鍵是利用折線統(tǒng)計圖獲取有效的信息.10、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當?shù)募糸_,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據(jù)立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據(jù)三個特殊圖案的相對位置關系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關鍵點:把展開圖折回立方體再觀察.11、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【點睛】本題考查了切線的性質,坐標與圖形性質,解題的關鍵是掌握切線的性質和坐標計算.12、B【解析】
根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點睛】考查了二次函數(shù)的最值,解題時,利用配方法和非負數(shù)的性質求得xy的最大值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、±【解析】∵與同時成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.14、5【解析】分析:根據(jù)n棱柱的特點,由n個側面和兩個底面構成,可判斷.詳解:由題意可知:7-2=5.故答案為5.點睛:此題主要考查了棱柱的概念,根據(jù)棱柱的底面和側面的關系求解是解題關鍵.15、8【解析】為了使第8次的環(huán)數(shù)最少,可使后面的2次射擊都達到最高環(huán)數(shù),即10環(huán).設第8次射擊環(huán)數(shù)為x環(huán),根據(jù)題意列出一元一次不等式62+x+2×10>89解之,得x>7x表示環(huán)數(shù),故x為正整數(shù)且x>7,則x的最小值為8即第8次至少應打8環(huán).點睛:本題考查的是一元一次不等式的應用.解決此類問題的關鍵是在理解題意的基礎上,建立與之相應的解決問題的“數(shù)學模型”——不等式,再由不等式的相關知識確定問題的答案.16、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.17、36或4.【解析】
(3)當B′D=B′C時,過B′點作GH∥AD,則∠B′GE=90°,當B′C=B′D時,AG=DH=DC=8,由AE=3,AB=36,得BE=3.由翻折的性質,得B′E=BE=3,∴EG=AG﹣AE=8﹣3=5,∴B′G===33,∴B′H=GH﹣B′G=36﹣33=4,∴DB′===;(3)當DB′=CD時,則DB′=36(易知點F在BC上且不與點C、B重合);(3)當CB′=CD時,∵EB=EB′,CB=CB′,∴點E、C在BB′的垂直平分線上,∴EC垂直平分BB′,由折疊可知點F與點C重合,不符合題意,舍去.綜上所述,DB′的長為36或.故答案為36或.考點:3.翻折變換(折疊問題);3.分類討論.18、4【解析】
根據(jù)圓柱的側面積公式,計算即可.【詳解】圓柱的底面半徑為r=1,母線長為l=2,則它的側面積為S側=2πrl=2π×1×2=4π.故答案為:4π.【點睛】題考查了圓柱的側面積公式應用問題,是基礎題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(2)方程有兩個不相等的實數(shù)根;(2)b=-2,a=2時,x2=x2=﹣2.【解析】
分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數(shù)根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數(shù)根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.20、(1)C;(2)100【解析】
(1)根據(jù)中位數(shù)的定義即可作出判斷;(2)先算出樣本中C等級的百分比,再用總數(shù)乘以400即可.【詳解】解:(1)由直方圖中可知數(shù)據(jù)總數(shù)為40個,第20,21個數(shù)據(jù)的平均數(shù)為本組數(shù)據(jù)的中位數(shù),第20,21個數(shù)據(jù)的等級都是C等級,故本次調查中,男生的跳繩成績的中位數(shù)在C等級;故答案為C.(2)400=100(人)答:估計該校九年級男生跳繩成績是等級的人數(shù)有100人.【點睛】本題考查了中位數(shù)的求法和用樣本數(shù)估計總體數(shù)據(jù),理解相關知識是解題的關鍵.21、①CD;②平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;③.【解析】
①根據(jù)作圖依據(jù)平行線分線段成比例定理求解可得;②根據(jù)“平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例”可得;③先證得,即,從而知.【詳解】①∵,∴OA:AB=OC:CD,∵,,,,∴線段就是所求的線段x,故答案為:②這位同學作圖的依據(jù)是:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;故答案為:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;③∵、,且,∴,∴,即,∴,∴.【點睛】本題主要考查作圖﹣復雜作圖,解題的關鍵是熟練掌握平行線分線段成比例定理、相似三角形的判定及向量的計算.22、(1)1;(2)經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等【解析】試題分析:(1)根據(jù)OB=3OA,結合點B的位置即可得出點B對應的數(shù);(2)設經(jīng)過x秒,點M、點N分別到原點O的距離相等,找出點M、N對應的數(shù),再分點M、點N在點O兩側和點M、點N重合兩種情況考慮,根據(jù)M、N的關系列出關于x的一元一次方程,解之即可得出結論.試題解析:(1)∵OB=3OA=1,
∴B對應的數(shù)是1.
(2)設經(jīng)過x秒,點M、點N分別到原點O的距離相等,
此時點M對應的數(shù)為3x-2,點N對應的數(shù)為2x.
①點M、點N在點O兩側,則
2-3x=2x,
解得x=2;
②點M、點N重合,則,
3x-2=2x,
解得x=2.
所以經(jīng)過2秒或2秒,點M、點N分別到原點O的距離相等.23、證明見解析.【解析】
想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.24、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數(shù)格子可得到點P關于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網(wǎng)格結合矩形的性質以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.25、解:原式=,.【解析】
試題分析:先將括號里面的通分后,將除法轉換成乘法,約分化簡.然后代x的值,進行二次根式化簡.解:原式=.當x=-1時,原式.26、每臺電腦0.5萬元;每臺電子白板1.5萬
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程爆破物品儲存規(guī)定
- 2024學校校園綠化養(yǎng)護服務合同
- 地鐵電力施工承包合同
- 2024年廣告投放與授權合同
- 生物質能源項目招投標授權
- 工業(yè)園區(qū)寬帶施工協(xié)議
- 2024互聯(lián)網(wǎng)金融服務平臺運營合同-創(chuàng)新金融服務
- 教育培訓機構會議費管理策略
- 智慧城市公共服務平臺協(xié)議
- 導演家庭保姆招聘協(xié)議
- 2024屆高三英語一輪復習:讀后續(xù)寫練習寫作講義1素材
- 幼兒園優(yōu)質公開課:小班數(shù)學《開心果園(5以內的點數(shù))》課件
- 冬季勞動安全注意事項-02
- 危險廢物貯存場所建設方案及要求
- 型鋼橋梁拆除施工方案范本
- 指導青年教師記錄表
- 08江山實習區(qū)域地質調查報告
- GB/T 10000-2023中國成年人人體尺寸
- 數(shù)獨題目100題2(可打印)12951
- (完整版)《工程倫理》歷年真題
- 骨盆骨折PPT完整版
評論
0/150
提交評論