版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若平面向量,滿足,則的最大值為()A. B. C. D.2.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1404.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.5.已知,,若,則向量在向量方向的投影為()A. B. C. D.6.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.7.設(shè)等差數(shù)列的前n項和為,且,,則()A.9 B.12 C. D.8.已知,,,則的最小值為()A. B. C. D.9.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.10.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或111.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.12.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知正四棱柱的底面邊長為,側(cè)面的對角線長是,則這個正四棱柱的體積是____.14.過動點作圓:的切線,其中為切點,若(為坐標原點),則的最小值是__________.15.在的二項展開式中,所有項的系數(shù)的和為________16.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.18.(12分)設(shè)直線與拋物線交于兩點,與橢圓交于兩點,設(shè)直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數(shù),滿足?并說明理由.19.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.20.(12分)已知函數(shù),其中,.(1)當時,求的值;(2)當?shù)淖钚≌芷跒闀r,求在上的值域.21.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數(shù).以下莖葉圖記錄了他們的考試分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分數(shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據(jù)這20人的分數(shù)補全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計所有員工的平均分數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學期望.22.(10分)設(shè),函數(shù).(1)當時,求在內(nèi)的極值;(2)設(shè)函數(shù),當有兩個極值點時,總有,求實數(shù)的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【題目詳解】由題意可得:,,,故選:C【答案點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關(guān)鍵點.本題屬中檔題.2.B【答案解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【題目詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【答案點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.3.C【答案解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C4.D【答案解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.5.B【答案解析】
由,,,再由向量在向量方向的投影為化簡運算即可【題目詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【答案點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題6.C【答案解析】
根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【題目詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【答案點睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.7.A【答案解析】
由,可得以及,而,代入即可得到答案.【題目詳解】設(shè)公差為d,則解得,所以.故選:A.【答案點睛】本題考查等差數(shù)列基本量的計算,考查學生運算求解能力,是一道基礎(chǔ)題.8.B【答案解析】,選B9.D【答案解析】
由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【題目詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【答案點睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.10.D【答案解析】
求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標,代入直線方程,求得的值.【題目詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【答案點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.11.C【答案解析】
利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【題目詳解】由,,,所以有.選C.【答案點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進行等價轉(zhuǎn)化.12.B【答案解析】
設(shè)直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【題目詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【答案點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標之間的關(guān)系,考查計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.14.【答案解析】解答:由圓的方程可得圓心C的坐標為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.15.1【答案解析】
設(shè),令,的值即為所有項的系數(shù)之和。【題目詳解】設(shè),令,所有項的系數(shù)的和為。【答案點睛】本題主要考查二項式展開式所有項的系數(shù)的和的求法─賦值法。一般地,對于,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。16.【答案解析】
依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【題目詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【答案點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.見解析【答案解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.18.(1)證明見解析(0,2);(2)存在,理由見解析【答案解析】
(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡即可求解.【題目詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【答案點睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.19.(1)(2)【答案解析】
(1))當時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【題目詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.【答案點睛】本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎(chǔ)題.20.(1)(2)【答案解析】
(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【題目詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當時,.當時,(最大值)當時,在是增函數(shù),在是減函數(shù).的值域是.【答案點睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.21.(1);(2)①82,②分布列見解析,【答案解析】
(1)從20人中任取3人共有種結(jié)果,恰有1人成績“優(yōu)秀”共有種結(jié)果,利用古典概型的概率計算公式計算即可;(2)①平均數(shù)的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【題目詳解】(1)設(shè)從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學期望.【答案點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計值等知識,是一道容易題.22.(1)極大值是,無極小值;(2)【答案解析】
(1)當時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【題目詳解】(1)當時,.令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中式面點師理論培訓(xùn)
- 中考數(shù)學二輪復(fù)習專項21~23題對點提分訓(xùn)練(二)課件
- 統(tǒng)編版2024-2025學年三年級語文上冊期中考試卷(含答案)
- 山東省菏澤市第一中學2024-2025學年高二上學期第二次月考數(shù)學試題(含答案)
- 2024年高一上學期10月份月考測試卷
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)課件 易月娥 項目9、10 VPN服務(wù)器的配置與管理、NAT服務(wù)器的配置與管理
- 面向SDG的國網(wǎng)行動-破解電力線路與自然的沖突
- 大單元教學理念及其定義、特點與實施策略
- 高中物理第一章電與磁第二節(jié)點電荷間的相互作用課件粵教版選修1-
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)10.1 知識引入
- 二實小“群文閱讀”立項申報書
- 傳感器技術(shù)習題答案
- 射線作業(yè)安全培訓(xùn)課件
- 采油院井下工具介紹
- 輕鋼龍骨紙面石膏板隔墻施工法
- 施工機具報審表
- 市場結(jié)構(gòu)理論練習習題
- 材料力學內(nèi)部習習題集及問題詳解
- 燈桿生產(chǎn)工藝流程
- 電控柜箱體設(shè)計規(guī)范
- 婦產(chǎn)科急診及急救PPT課件
評論
0/150
提交評論