版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第4講
庫存管理(II)第4講
庫存管理(II)1Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup2TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq3TwoStageEchelonInventoryTwo-stageprocess:
Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)
TwoStageEchelonInventoryTwo4TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost
ThetotalcostTwoStageEchelonInventoryTwo5TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly
TwoStageEchelonInventoryTwo6TwoStageEchelonInventoryTwo-stageprocess:
Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits
TwoStageEchelonInventoryTwo7TwoStageEchelonInventoryTwo-stageprocess:
Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,
TwoStageEchelonInventoryTwo8TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel9TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub10TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc11TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc12TwoStageEchelonInventoryTwo-stageprocess:
Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo13TwoStageEchelonInventoryTwo-stageprocess:
Step3TwoStageEchelonInventoryTwo14TwoStageEchelonInventoryTwo-stageprocess:
Step4 Step5TwoStageEchelonInventoryTwo15TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa16TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa17TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa18TwoStageEchelonInventoryExample1:Step3:
thatis, Thus,usen=2.TwoStageEchelonInventoryExa19TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa20TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa21InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta22InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta23InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta24InventoryControlwithUncertainDemand
Example2:
AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta25InventoryControlwithUncertainDemand
Example2:InventoryControlwithUncerta26InventoryControlwithUncertainDemand
Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.
InventoryControlwithUncerta27InventoryControlwithUncertainDemand
Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.
Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.
Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance
InventoryControlwithUncerta28InventoryControlwithUncertainDemand
Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta29InventoryControlwithUncertainDemand
Thenormaldensityfunctionisgivenbytheformula
Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta30InventoryControlwithUncertainDemand
InventoryControlwithUncerta31OptimizationCriterion
Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 32TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous33TheNewsboyModel(ContinuousDemands)
Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.
Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous34TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:
Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous35TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:TheNewsboyModel(Continuous36TheNewsboyModel(ContinuousDemands)
Example2(continued):
Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.
TheNewsboyModel(Continuous37TheNewsboyModel(ContinuousDemands)
Example2(continued):
Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.
TheNewsboyModel(Continuous38TheNewsboyModel(ContinuousDemands)
Example2(continued):
TheNewsboyModel(Continuous39TheNewsboyModel(ContinuousDemands)
Example2(continued):
Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous40TheNewsboyModel(DiscreteDemands)
Optimalpolicyfordiscretedemand:
Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.
Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe41TheNewsboyModel(DiscreteDemands)
Example2:
TheNewsboyModel(DiscreteDe42TheNewsboyModel(DiscreteDemands)
Example2:
Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.
TheNewsboyModel(DiscreteDe43TheNewsboyModel(DiscreteDemands)
ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.
Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe44MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.
MultiproductSystems ABCanaly45MultiproductSystems ABCanalysis:
MultiproductSystems ABCanaly46MultiproductSystems ABCanalysis:
SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinuously. Moresophisticatedforecastingproceduresmightbeusedandmorecarewouldbetakenintheestimationofthevariouscostparametersrequiredincalculatingoperatingpolicies.
MultiproductSystems ABCanaly47MultiproductSystems ABCanalysis:
ForBitemsinventoriescouldbereviewedperiodically,itemscouldbeorderedingroupsratherthanindividually,andsomewhatlesssophisticatedforecastingmethodscouldbeused.MultiproductSystems ABCanaly48MultiproductSystems ABCanalysis:TheminimumdegreeofcontrolwouldbeappliedtoCitems.ForveryinexpensiveCitemswithmoderatelevelsofdemand,largelotsizesarerecommendedtominimizethefrequencythattheseitemsareordered.ForexpensiveCitemswithverylowdemand,thebestpolicyisgenerallynottoholdanyinventory.Onewouldsimplyordertheseitemsastheyaredemanded.MultiproductSystems ABCanaly49LotSize-ReorderPointSystemsInwhatfollows,weassumethattheoperatingpolicyisoftheform.However,whengeneralizingtheEOQanalysistoallowforrandomdemand,wetreatandasindependentdecisionvariables.LotSize-ReorderPointSystems50LotSize-ReorderPointSystemsAssumptionsThesystemiscontinuous-reviewDemandisrandomandstationaryThereisafixedpositiveleadtimeforplacinganorderThefollowingcostsareassumedSetupcostat$perorder.Holdingcostat$perunitheldperyear.Proportionalordercostof$peritem.Stock-outcostof$perunitofunsatisfieddemandLotSize-ReorderPointSystems51LotSize-ReorderPointSystems
Describingdemand:
Thedemandduringtheleadtimeisacontinuousrandomvariablewithprobabilitydensityfunction(orpdf),andaccumulativedistributionfunction(orcdf) .Letandbethemeanandstandarddeviationofdemandduringleadtime.LotSize-ReorderPointSystems52LotSize-ReorderPointSystems
Decisionvariables:
Therearetwodecisionvariablesforthisproblem, and, where=thelotsizeororderquantityand =thereorderlevelinunitsofinventory.
LotSize-ReorderPointSystems53LotSize-ReorderPointSystems
Decisionvariables:LotSize-ReorderPointSystems54AdditionalDiscussionofPeriodic-ReviewSystems
Definetwonumbers,and,tobeusedasfollows: Whenthelevelofonhandinventoryislessthanorequalto,anorderforthedifferencebetweentheinventoryandisplaced. Ifisthestartinginventoryinanyperiod,thenthe policyis:If,order.If,don'torder.AdditionalDiscussionofPerio55AdditionalDiscussionofPeriodic-ReviewSystems
DeterminingoptimalvaluesofAdditionalDiscussionofPerio56第4講
庫存管理(II)第4講
庫存管理(II)57Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup58TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq59TwoStageEchelonInventoryTwo-stageprocess:
Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)
TwoStageEchelonInventoryTwo60TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost
ThetotalcostTwoStageEchelonInventoryTwo61TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly
TwoStageEchelonInventoryTwo62TwoStageEchelonInventoryTwo-stageprocess:
Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits
TwoStageEchelonInventoryTwo63TwoStageEchelonInventoryTwo-stageprocess:
Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,
TwoStageEchelonInventoryTwo64TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel65TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub66TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc67TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc68TwoStageEchelonInventoryTwo-stageprocess:
Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo69TwoStageEchelonInventoryTwo-stageprocess:
Step3TwoStageEchelonInventoryTwo70TwoStageEchelonInventoryTwo-stageprocess:
Step4 Step5TwoStageEchelonInventoryTwo71TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa72TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa73TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa74TwoStageEchelonInventoryExample1:Step3:
thatis, Thus,usen=2.TwoStageEchelonInventoryExa75TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa76TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa77InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta78InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta79InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta80InventoryControlwithUncertainDemand
Example2:
AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta81InventoryControlwithUncertainDemand
Example2:InventoryControlwithUncerta82InventoryControlwithUncertainDemand
Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.
InventoryControlwithUncerta83InventoryControlwithUncertainDemand
Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.
Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.
Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance
InventoryControlwithUncerta84InventoryControlwithUncertainDemand
Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta85InventoryControlwithUncertainDemand
Thenormaldensityfunctionisgivenbytheformula
Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta86InventoryControlwithUncertainDemand
InventoryControlwithUncerta87OptimizationCriterion
Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 88TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous89TheNewsboyModel(ContinuousDemands)
Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.
Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous90TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:
Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous91TheNewsboyModel(ContinuousDemands)
Determiningtheoptimalpolicy:TheNewsboyModel(Continuous92TheNewsboyModel(ContinuousDemands)
Example2(continued):
Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.
TheNewsboyModel(Continuous93TheNewsboyModel(ContinuousDemands)
Example2(continued):
Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.
TheNewsboyModel(Continuous94TheNewsboyModel(ContinuousDemands)
Example2(continued):
TheNewsboyModel(Continuous95TheNewsboyModel(ContinuousDemands)
Example2(continued):
Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous96TheNewsboyModel(DiscreteDemands)
Optimalpolicyfordiscretedemand:
Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.
Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe97TheNewsboyModel(DiscreteDemands)
Example2:
TheNewsboyModel(DiscreteDe98TheNewsboyModel(DiscreteDemands)
Example2:
Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.
TheNewsboyModel(DiscreteDe99TheNewsboyModel(DiscreteDemands)
ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.
Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe100MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.
MultiproductSystems ABCanaly101MultiproductSystems ABCanalysis:
MultiproductSystems ABCanaly102MultiproductSystems ABCanalysis:
SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南省職教高考《職業(yè)適應性測試》考前沖刺模擬試題庫(附答案)
- 《內(nèi)容策劃與編輯》期末考試題庫及答案
- 第一章 地球(單元測試)(解析版)
- 2025年江西泰豪動漫職業(yè)學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 陜西省寶雞市高三教學質(zhì)量檢測語文試題(含答案)
- 2025年民用航空運輸行業(yè)趨勢與市場潛力分析
- 范文房產(chǎn)抵押擔保合同模板
- 電子商務代理合同書
- 居間傭金服務合同范本
- 電子商務合同協(xié)議
- 四川省自貢市2024-2025學年上學期八年級英語期末試題(含答案無聽力音頻及原文)
- 2025年上海用人單位勞動合同(4篇)
- 新疆烏魯木齊地區(qū)2025年高三年級第一次質(zhì)量監(jiān)測生物學試卷(含答案)
- 衛(wèi)生服務個人基本信息表
- 高中英語北師大版必修第一冊全冊單詞表(按單元編排)
- 技術交易系統(tǒng)的新概念
- 通用電子嘉賓禮薄
- 春節(jié)習俗中的傳統(tǒng)節(jié)日服飾與裝扮
- (完整word版)英語四級單詞大全
- 武裝押運操作規(guī)程完整
- 薪酬專員崗位月度KPI績效考核表
評論
0/150
提交評論