運籌學與供應鏈管理-第4講課件_第1頁
運籌學與供應鏈管理-第4講課件_第2頁
運籌學與供應鏈管理-第4講課件_第3頁
運籌學與供應鏈管理-第4講課件_第4頁
運籌學與供應鏈管理-第4講課件_第5頁
已閱讀5頁,還剩107頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第4講

庫存管理(II)第4講

庫存管理(II)1Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup2TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq3TwoStageEchelonInventoryTwo-stageprocess:

Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)

TwoStageEchelonInventoryTwo4TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost

ThetotalcostTwoStageEchelonInventoryTwo5TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly

TwoStageEchelonInventoryTwo6TwoStageEchelonInventoryTwo-stageprocess:

Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits

TwoStageEchelonInventoryTwo7TwoStageEchelonInventoryTwo-stageprocess:

Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,

TwoStageEchelonInventoryTwo8TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel9TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub10TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc11TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc12TwoStageEchelonInventoryTwo-stageprocess:

Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo13TwoStageEchelonInventoryTwo-stageprocess:

Step3TwoStageEchelonInventoryTwo14TwoStageEchelonInventoryTwo-stageprocess:

Step4 Step5TwoStageEchelonInventoryTwo15TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa16TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa17TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa18TwoStageEchelonInventoryExample1:Step3:

thatis, Thus,usen=2.TwoStageEchelonInventoryExa19TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa20TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa21InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta22InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta23InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta24InventoryControlwithUncertainDemand

Example2:

AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta25InventoryControlwithUncertainDemand

Example2:InventoryControlwithUncerta26InventoryControlwithUncertainDemand

Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.

InventoryControlwithUncerta27InventoryControlwithUncertainDemand

Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.

Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.

Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance

InventoryControlwithUncerta28InventoryControlwithUncertainDemand

Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta29InventoryControlwithUncertainDemand

Thenormaldensityfunctionisgivenbytheformula

Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta30InventoryControlwithUncertainDemand

InventoryControlwithUncerta31OptimizationCriterion

Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 32TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous33TheNewsboyModel(ContinuousDemands)

Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.

Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous34TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:

Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous35TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:TheNewsboyModel(Continuous36TheNewsboyModel(ContinuousDemands)

Example2(continued):

Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.

TheNewsboyModel(Continuous37TheNewsboyModel(ContinuousDemands)

Example2(continued):

Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.

TheNewsboyModel(Continuous38TheNewsboyModel(ContinuousDemands)

Example2(continued):

TheNewsboyModel(Continuous39TheNewsboyModel(ContinuousDemands)

Example2(continued):

Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous40TheNewsboyModel(DiscreteDemands)

Optimalpolicyfordiscretedemand:

Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.

Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe41TheNewsboyModel(DiscreteDemands)

Example2:

TheNewsboyModel(DiscreteDe42TheNewsboyModel(DiscreteDemands)

Example2:

Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.

TheNewsboyModel(DiscreteDe43TheNewsboyModel(DiscreteDemands)

ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.

Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe44MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.

MultiproductSystems ABCanaly45MultiproductSystems ABCanalysis:

MultiproductSystems ABCanaly46MultiproductSystems ABCanalysis:

SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinuously. Moresophisticatedforecastingproceduresmightbeusedandmorecarewouldbetakenintheestimationofthevariouscostparametersrequiredincalculatingoperatingpolicies.

MultiproductSystems ABCanaly47MultiproductSystems ABCanalysis:

ForBitemsinventoriescouldbereviewedperiodically,itemscouldbeorderedingroupsratherthanindividually,andsomewhatlesssophisticatedforecastingmethodscouldbeused.MultiproductSystems ABCanaly48MultiproductSystems ABCanalysis:TheminimumdegreeofcontrolwouldbeappliedtoCitems.ForveryinexpensiveCitemswithmoderatelevelsofdemand,largelotsizesarerecommendedtominimizethefrequencythattheseitemsareordered.ForexpensiveCitemswithverylowdemand,thebestpolicyisgenerallynottoholdanyinventory.Onewouldsimplyordertheseitemsastheyaredemanded.MultiproductSystems ABCanaly49LotSize-ReorderPointSystemsInwhatfollows,weassumethattheoperatingpolicyisoftheform.However,whengeneralizingtheEOQanalysistoallowforrandomdemand,wetreatandasindependentdecisionvariables.LotSize-ReorderPointSystems50LotSize-ReorderPointSystemsAssumptionsThesystemiscontinuous-reviewDemandisrandomandstationaryThereisafixedpositiveleadtimeforplacinganorderThefollowingcostsareassumedSetupcostat$perorder.Holdingcostat$perunitheldperyear.Proportionalordercostof$peritem.Stock-outcostof$perunitofunsatisfieddemandLotSize-ReorderPointSystems51LotSize-ReorderPointSystems

Describingdemand:

Thedemandduringtheleadtimeisacontinuousrandomvariablewithprobabilitydensityfunction(orpdf),andaccumulativedistributionfunction(orcdf) .Letandbethemeanandstandarddeviationofdemandduringleadtime.LotSize-ReorderPointSystems52LotSize-ReorderPointSystems

Decisionvariables:

Therearetwodecisionvariablesforthisproblem, and, where=thelotsizeororderquantityand =thereorderlevelinunitsofinventory.

LotSize-ReorderPointSystems53LotSize-ReorderPointSystems

Decisionvariables:LotSize-ReorderPointSystems54AdditionalDiscussionofPeriodic-ReviewSystems

Definetwonumbers,and,tobeusedasfollows: Whenthelevelofonhandinventoryislessthanorequalto,anorderforthedifferencebetweentheinventoryandisplaced. Ifisthestartinginventoryinanyperiod,thenthe policyis:If,order.If,don'torder.AdditionalDiscussionofPerio55AdditionalDiscussionofPeriodic-ReviewSystems

DeterminingoptimalvaluesofAdditionalDiscussionofPerio56第4講

庫存管理(II)第4講

庫存管理(II)57Multi-EchelonInventoryinSupplyChainMulti-EchelonInventoryinSup58TwoStageEchelonInventorySequentialstockingpointswithleveldemandTwo-stageprocessTwoStageEchelonInventorySeq59TwoStageEchelonInventoryTwo-stageprocess:

Alittlereflectionshowsthatatleastforthecaseofdeterministicdemanditneverwouldmakesensetohave beanythingbutanintegermultipleof.Therefore,wecanthinkoftwoalternativedecisionvariablesandwhere (4.1)

TwoStageEchelonInventoryTwo60TwoStageEchelonInventoryTwo-stageprocess: Thefirststagecost Thesecondstagecost

ThetotalcostTwoStageEchelonInventoryTwo61TwoStageEchelonInventoryTwo-stageprocess: Thewarehouseecheloninventoryisvaluedat whiletheretailerecheloninventoryisvaluedatonly

TwoStageEchelonInventoryTwo62TwoStageEchelonInventoryTwo-stageprocess:

Thetotalrelevant(setuppluscarrying)costsperunittimearegivenby =averagevalueofthewarehouseecheloninventory,inunits =averagevalueoftheretailerecheloninventory,inunits

TwoStageEchelonInventoryTwo63TwoStageEchelonInventoryTwo-stageprocess:

Substitutingfromequation(4.1)andnotingthattheechelonstocksfollowsawtoothpatterns,

TwoStageEchelonInventoryTwo64TwoStageEchelonInventorySelect(aninteger)andinordertominimizePartialderivationofTRCTwoStageEchelonInventorySel65TwoStageEchelonInventorySubstitutetheresultintothecostequationWerecognizethatthenthatminimizesthesimplerexpressionTwoStageEchelonInventorySub66TwoStageEchelonInventoryAconvenientwayistofirstsetwhichgivesThissolvesforTwoStageEchelonInventoryAc67TwoStageEchelonInventoryAscertainandwhereandarethetwointegerssurroundingtheWhichevergivesthelowervalueofFistheappropriatentouse(becausetheFfunctionisconvexinn).TwoStageEchelonInventoryAsc68TwoStageEchelonInventoryTwo-stageprocess:

Step1 Compute Step2 Ascertainthetwointegervalues,and,thatsurround.TwoStageEchelonInventoryTwo69TwoStageEchelonInventoryTwo-stageprocess:

Step3TwoStageEchelonInventoryTwo70TwoStageEchelonInventoryTwo-stageprocess:

Step4 Step5TwoStageEchelonInventoryTwo71TwoStageEchelonInventoryExample1:Letusconsideraparticularliquidproductthatafirmbuysinbulk,thenbreaksdownandrepackages. Sointhiscase,thewarehousecorrespondstotheinventorypriortotherepackagingoperation,andtheretailercorrespondstotheinventoryaftertherepackagingoperation. Thedemandforthisitemcanbeassumedtobeessentiallydeterministicandlevelatarateof1000litersperyear.TwoStageEchelonInventoryExa72TwoStageEchelonInventoryExample1:Theunitvalueofthebulkmaterialoris$1/liter,whilethevalueaddedbythetransforming(breakandpackage)operationis$4/liter.Thefixedcomponentofthepurchasecharge()is$10,whilethesetupcostforthebreakandrepackageoperation()is$15.Finally,theestimatedcarryingchargeis0.24$/$/yr.TwoStageEchelonInventoryExa73TwoStageEchelonInventoryExample1: Step1: Step2:TwoStageEchelonInventoryExa74TwoStageEchelonInventoryExample1:Step3:

thatis, Thus,usen=2.TwoStageEchelonInventoryExa75TwoStageEchelonInventoryExample:Step4:Step5:TwoStageEchelonInventoryExa76TwoStageEchelonInventoryExample1:Inotherwords,wepurchase334litersatatime;one-halfoftheseor167litersareimmediatelybrokenandrepackaged.Whenthese167(finished)litersaredepleted,asecondbreakandrepackagerunof167litersismade.Whenthesearedepleted,westartanewcyclebyagainpurchasing334litersofrawmaterial.TwoStageEchelonInventoryExa77InventoryControlwithUncertainDemandThedemandcanbedecomposedintotwoparts,where=Deterministiccomponentofdemandand=Randomcomponentofdemand.InventoryControlwithUncerta78InventoryControlwithUncertainDemand Thereareanumberofcircumstancesunderwhichitwouldbeappropriatetotreatasbeingdeterministiceventhoughisnotzero.Someoftheseare:Whenthevarianceoftherandomcomponent, issmallrelativetothemagnitudeof.Whenthepredictablevariationismoreimportantthantherandomvariation.Whentheproblemstructureistoocomplextoincludeanexplicitrepresentationofrandomnessinthemodel.InventoryControlwithUncerta79InventoryControlwithUncertainDemand However,formanyitems,therandomcomponentofthedemandistoosignificanttoignore. Aslongastheexpecteddemandperunittimeisrelativelyconstantandtheproblemstructurenottoocomplex,explicittreatmentofdemanduncertaintyisdesirable.InventoryControlwithUncerta80InventoryControlwithUncertainDemand

Example2:

AnewsstandpurchasesanumberofcopiesofTheComputerJournal.Theobserveddemandsduringeachofthelast52weekswere:InventoryControlwithUncerta81InventoryControlwithUncertainDemand

Example2:InventoryControlwithUncerta82InventoryControlwithUncertainDemand

Example2: EstimatetheprobabilitythatthenumberofcopiesoftheJournalsoldinanyweek. Theprobabilitythatdemandis10isestimatedtobe2/52=0.0385,andtheprobabilitythatthedemandis15is5/52=0.0962. Cumulativeprobabilitiescanalsobeestimatedinasimilarway. TheprobabilitythattherearenineorfewercopiesoftheJournalsoldinanyweekis(1+0+0+0+3+1+2+2+4+6)/52=19/52=0.3654.

InventoryControlwithUncerta83InventoryControlwithUncertainDemand

Wegenerallyapproximatethedemandhistoryusingacontinuousdistribution.

Byfar,themostpopulardistributionforinventoryapplicationsisthenormal.

Anormaldistributionisdeterminedbytwoparameters:themeanandthevariance

InventoryControlwithUncerta84InventoryControlwithUncertainDemand

Thesecanbeestimatedfromahistoryofdemandbythesamplemeanandthesamplevariance.InventoryControlwithUncerta85InventoryControlwithUncertainDemand

Thenormaldensityfunctionisgivenbytheformula

Wesubstituteastheestimatorforandastheestimatorfor.InventoryControlwithUncerta86InventoryControlwithUncertainDemand

InventoryControlwithUncerta87OptimizationCriterion

Ingeneral,optimizationinproductionproblemsmeansfindingacontrolrulethatachievesminimumcost. However,whendemandisrandom,thecostincurredisitselfrandom,anditisnolongerobviouswhattheoptimizationcriterionshouldbe. Virtuallyallofthestochasticoptimizationtechniquesappliedtoinventorycontrolassumethatthegoalistominimizeexpectedcosts.OptimizationCriterion 88TheNewsboyModel(ContinuousDemands) Thedemandisapproximatelynormallydistributedwithmean11.731andstandarddeviation4.74. Eachcopyispurchasedfor25centsandsoldfor75cents,andheispaid10centsforeachunsoldcopybyhissupplier. Oneobvioussolutionisapproximately12copies. SupposeMacpurchasesacopythathedoesn'tsell.Hisout-of-pocketexpenseis25cents10cents=15cents. Supposeontheotherhand,heisunabletomeetthedemandofacustomer.Inthatcase,heloses75cents25cents=50centsprofit.TheNewsboyModel(Continuous89TheNewsboyModel(ContinuousDemands)

Notation: =Costperunitofpositiveinventoryremainingattheendoftheperiod(knownastheoveragecost). =Costperunitofunsatisfieddemand.Thiscanbethoughtofasacostperunitofnegativeendinginventory(knownastheunderagecost). Thedemandisacontinuousnonnegativerandomvariablewithdensityfunctionandcumulativedistributionfunction.

Thedecisionvariableisthenumberofunitstobepurchasedatthebeginningoftheperiod.TheNewsboyModel(Continuous90TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:

Thecostfunction TheoptimalsolutionequationTheNewsboyModel(Continuous91TheNewsboyModel(ContinuousDemands)

Determiningtheoptimalpolicy:TheNewsboyModel(Continuous92TheNewsboyModel(ContinuousDemands)

Example2(continued):

Normallydistributedwithmean=11.73andstandarddeviation=4.74. SinceMacpurchasesthemagazinesfor25centsandcansalvageunsoldcopiesfor10cents,hisoveragecostis=2510=15cents. Hisunderagecostistheprofitoneachsale,sothat=7525=50cents.

TheNewsboyModel(Continuous93TheNewsboyModel(ContinuousDemands)

Example2(continued):

Thecriticalratiois=0.50/0.65=0.77. Purchaseenoughcopiestosatisfyalloftheweeklydemandwithprobability0.77.Theoptimalisthe77thpercentileofthedemanddistribution.

TheNewsboyModel(Continuous94TheNewsboyModel(ContinuousDemands)

Example2(continued):

TheNewsboyModel(Continuous95TheNewsboyModel(ContinuousDemands)

Example2(continued):

Usingthedataofthenormaldistributionweobtainastandardizedvalueof=0.74.Theoptimalis Hence,heshouldpurchase15copieseveryweek.TheNewsboyModel(Continuous96TheNewsboyModel(DiscreteDemands)

Optimalpolicyfordiscretedemand:

Theprocedureforfindingtheoptimalsolutiontothenewsboyproblemwhenthedemandisassumedtobediscreteisanaturalgeneralizationofthecontinuouscase.

Theoptimalsolutionprocedureistolocatethecriticalratiobetweentwovaluesofandchoosethecorrespondingtothehighervalue.ThatisTheNewsboyModel(DiscreteDe97TheNewsboyModel(DiscreteDemands)

Example2:

TheNewsboyModel(DiscreteDe98TheNewsboyModel(DiscreteDemands)

Example2:

Thecriticalratioforthisproblemwas0.77,whichcorrespondstoavalueofbetween=14and=15. Sinceweroundup,theoptimalsolutionis=15.Noticethatthisisexactlythesameorderquantityobtainedusingthenormalapproximation.

TheNewsboyModel(DiscreteDe99TheNewsboyModel(DiscreteDemands)

ExtensiontoIncludeStartingInventory: Theoptimalpolicywhenthereisastartinginventoryof is: Order if.Don'torderif.

Notethatshouldbeinterpretedastheorder-up-topointratherthantheorderquantitywhen.Itisalsoknownasatargetorbasestocklevel.TheNewsboyModel(DiscreteDe100MultiproductSystems ABCanalysis:Thetrade-offsbetweenthecostofcontrollingthesystemandthepotentialbenefitsthataccruefromthatcontrol.Inmultiproductinventorysystemsnotallproductsareequallyprofitable.Alargeportionofthetotaldollarvolumeofsalesisoftenaccountedforbyasmallnumberofinventoryitems.

MultiproductSystems ABCanaly101MultiproductSystems ABCanalysis:

MultiproductSystems ABCanaly102MultiproductSystems ABCanalysis:

SinceAitemsaccountforthelion'sshareoftheyearlyrevenue,theseitemsshouldbewatchedmostclosely. InventorylevelsforAitemsshouldbemonitoredcontinu

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論