2022年新疆昌吉州共同體九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
2022年新疆昌吉州共同體九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
2022年新疆昌吉州共同體九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
2022年新疆昌吉州共同體九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
2022年新疆昌吉州共同體九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個菱形的邊長是方程的一個根,其中一條對角線長為8,則該菱形的面積為()A.48 B.24 C.24或40 D.48或802.下列說法中正確的是(

)A.弦是直徑 B.弧是半圓 C.半圓是圓中最長的弧 D.直徑是圓中最長的弦3.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°4.小亮同學在教學活動課中,用一塊長方形硬紙板在陽光下做投影實驗,通過觀察,發(fā)現(xiàn)這塊長方形硬紙板在平整的地面上不可能出現(xiàn)的投影是()A.線段 B.三角形 C.平行四邊形 D.正方形5.如圖,在△ABC中,點D、E分別在AB、AC邊上,DE∥BC,若AD=1,BD=2,則的值為()A. B. C. D.6.如圖,正六邊形內接于,連接.則的度數(shù)是()A. B. C. D.7.一元二次方程的解為()A. B., C., D.,8.點關于軸對稱的點的坐標是()A. B. C. D.9.如圖,矩形的邊在軸的正半軸上,點的坐標為,反比例函數(shù)的圖象經過矩形對角線的交點,則的值是()A.8 B.4 C.2 D.110.在?ABCD中,∠A﹣∠B=40°,則∠C的度數(shù)為()A.70° B.40° C.110° D.150°11.一次函數(shù)y=﹣3x﹣2的圖象和性質,表述正確的是()A.y隨x的增大而增大 B.在y軸上的截距為2C.與x軸交于點(﹣2,0) D.函數(shù)圖象不經過第一象限12.若點,,在反比例函數(shù)的圖像上,則的大小關系是()A. B. C. D.二、填空題(每題4分,共24分)13.飛機著陸后滑行的距離y(m)關于滑行時間t(s)的函數(shù)關系式是y=60t-t2,在飛機著陸滑行中,最后2s滑行的距離是______m14.把拋物線的圖像向右平移個單位,再向下平移個單位,所得圖像的解析式為,則的值為___________.15.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數(shù)的概率是_____.16.如圖,正方形中,點為射線上一點,,交的延長線于點,若,則______17.已知矩形ABCD,AB=3,AD=5,以點A為圓心,4為半徑作圓,則點C與圓A的位置關系為__________.18.已知二次函數(shù)的圖象與x軸有交點,則k的取值范圍是__________三、解答題(共78分)19.(8分)數(shù)學不僅是一門學科,也是一種文化,即數(shù)學文化.數(shù)學文化包括數(shù)學史、數(shù)學美和數(shù)學應用等多方面.古時候,在某個王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學們閱讀以下解答過程就知道答案了.設,則即:事實上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機中的計算器進行計算,可知答案是一個位數(shù):,這是一個非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學到的方法解決以下問題:我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計算:某中學“數(shù)學社團”開發(fā)了一款應用軟件,推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知一列數(shù):,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.20.(8分)如圖,已知拋物線與y軸相交于點A(0,3),與x正半軸相交于點B,對稱軸是直線x=1.(1)求此拋物線的解析式以及點B的坐標.(2)動點M從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向運動,同時動點N從點O出發(fā),以每秒3個單位長度的速度沿y軸正方向運動,當N點到達A點時,M、N同時停止運動.過動點M作x軸的垂線交線段AB于點Q,交拋物線于點P,設運動的時間為t秒.①當t為何值時,四邊形OMPN為矩形.②當t>0時,△BOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.21.(8分)如圖,在四邊形ABCD中,AD∥BC,AD=2BC,E為AD的中點,連接BD,BE,∠ABD=90°(1)求證:四邊形BCDE為菱形.(2)連接AC,若AC⊥BE,BC=2,求BD的長.22.(10分)已知:如圖,AB為⊙O的直徑,OD∥AC.求證:點D平分.23.(10分)某校的學生除了體育課要進行體育鍛煉外,寒暑假期間還要自己抽時間進行體育鍛煉,為了了解同學們假期體育鍛煉的情況,開學時體育老師隨機抽取了部分同學進行調查,按鍛煉的時間x(分鐘)分為以下四類:A類(),B類(),C類(),D類(),對調查結果進行整理并繪制了如圖所示的不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖,請結合圖中的信息解答下列各題:(1)扇形統(tǒng)計圖中D類所對應的圓心角度數(shù)為,并補全折線統(tǒng)計圖;(2)現(xiàn)從A類中選出兩名男同學和三名女同學,從以上五名同學中隨機抽取兩名同學進行采訪,請利用畫樹狀圖或列表的方法求出抽到的學生恰好是一男一女的概率.24.(10分)如圖,將繞點順時針旋轉得到,點恰好落在的延長線上,連接.分別交于點交于點.求的角度;求證:.25.(12分)如圖,已知一次函數(shù)的圖象交反比例函數(shù)的圖象于點和點,交軸于點.(1)求這兩個函數(shù)的表達式;(2)求的面積;(3)請直接寫出不等式的解集.26.如圖,是一張盾構隧道斷面結構圖.隧道內部為以O為圓心,AB為直徑的圓.隧道內部共分為三層,上層為排煙道,中間為行車隧道,下層為服務層.點A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m)

參考答案一、選擇題(每題4分,共48分)1、B【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的對角線互相垂直平分和三角形三邊的關系得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線為6,然后計算菱形的面積.【詳解】解:,所以,,∵菱形一條對角線長為8,∴菱形的邊長為5,∴菱形的另一條對角線為,∴菱形的面積.故選:B.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了三角形三邊的關系.也考查了三角形三邊的關系和菱形的性質.2、D【解析】試題分析:根據弦、直徑、弧、半圓的概念一一判斷即可.【解答】解:A、錯誤.弦不一定是直徑.B、錯誤.弧是圓上兩點間的部分.C、錯誤.優(yōu)弧大于半圓.D、正確.直徑是圓中最長的弦.故選D.【考點】圓的認識.3、A【分析】首先根據旋轉的性質,得出∠CBD=∠ABE,BD=BE;其次結合圖形,由等量代換,得∠EBD=∠ABC;最后根據等腰三角形的性質,得出∠BED=∠BDE,利用三角形內角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.【點睛】本題主要考查了旋轉的性質、等腰三角形的性質,以及三角形內角和定理.解題的關鍵是根據旋轉的性質得出旋轉前后的對應角、對應邊分別相等,利用等腰三角形的性質得出“等邊對等角”,再結合三角形內角和定理,即可得解.4、B【解析】根據長方形放置的不同角度,得到的不同影子,發(fā)揮想象能力逐個實驗即可.【詳解】解:將長方形硬紙的板面與投影線平行時,形成的影子為線段;將長方形硬紙板與地面平行放置時,形成的影子為矩形;將長方形硬紙板傾斜放置形成的影子為平行四邊形;由物體同一時刻物高與影長成比例,且長方形對邊相等,故得到的投影不可能是三角形.故選:B.【點睛】本題主要考查幾何圖形的投影,關鍵在于根據不同的位置,識別不同的投影圖形.5、B【解析】試題分析:∵DE∥BC,∴,∵,∴.故選B.考點:平行線分線段成比例.6、C【解析】根據正六邊形的內角和求得∠BCD,然后根據等腰三角形的性質即可得到結論.【詳解】解:∵在正六邊形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=30°,

故選:C.【點睛】本題考查的是正多邊形和圓、等腰三角形的性質,三角形的內角和,熟記多邊形的內角和是解題的關鍵.7、C【分析】通過因式分解法解一元二次方程即可得出答案.【詳解】∴或∴,故選C【點睛】本題主要考查解一元二次方程,掌握因式分解法是解題的關鍵.8、D【分析】根據特殊銳角的三角函數(shù)值,先確定點M的坐標,然后根據關于x軸對稱的點的坐標x值不變,y值互為相反數(shù)的特點進行選擇即可.【詳解】因為,所以,所以點所以關于x軸的對稱點為故選D.【點睛】本題考查的是特殊角三角函數(shù)值和關于x軸對稱的點的坐標特點,熟練掌握三角函數(shù)值是解題的關鍵.9、C【分析】根據矩形的性質求出點P的坐標,將點P的坐標代入中,求出的值即可.【詳解】∵點P是矩形的對角線的交點,點的坐標為∴點P將點P代入中解得故答案為:C.【點睛】本題考查了矩形的性質以及反比例函數(shù)的性質,掌握代入求值法求出的值是解題的關鍵.10、C【分析】由題意根據平行四邊形的對角相等以及鄰角之和為180°,即可求出該平行四邊形各個內角的度數(shù).【詳解】解:由題意畫出圖形如下所示:則∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=∠A=110°.故選:C.【點睛】本題考查平行四邊形的性質,解題的關鍵是掌握平行四邊形的對角相等以及鄰角之和為180°進行分析.11、D【解析】根據一次函數(shù)的圖象和性質,依次分析各個選項,選出正確的選項即可.【詳解】A.一次函數(shù)y=﹣3x﹣2的圖象y隨著x的增大而減小,即A項錯誤;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y軸的截距為﹣2,即B項錯誤;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即與x軸交于點(,0),即C項錯誤;D.函數(shù)圖象經過第二三四象限,不經過第一象限,即D項正確.故選D.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質,正確掌握一次函數(shù)圖象的增減性和一次函數(shù)的性質是解題的關鍵.12、C【解析】根據點A、B、C分別在反比例函數(shù)上,可解得、、的值,然后通過比較大小即可解答.【詳解】解:將A、B、C的橫坐標代入反比函數(shù)上,得:y1=-6,y2=3,y3=2,所以,;故選C.【點睛】本題考查了反比例函數(shù)的計算,熟練掌握是解題的關鍵.二、填空題(每題4分,共24分)13、6【分析】先求出飛機停下時,也就是滑行距離最遠時,s最大時對應的t值,再求出最后2s滑行的距離.【詳解】由題意,y=60t-t2,=?(t?20)2+600,即當t=20秒時,飛機才停下來.∴當t=18秒時,y=?(18?20)2+600=594m,故最后2s滑行的距離是600-594=6m故填:6.【點睛】本題考查了二次函數(shù)的應用.解題時,利用配方法求得t=20時,s取最大值,再根據題意進行求解.14、【分析】根據拋物線的平移規(guī)律:左加右減,上加下減,得出平移后的拋物線解析式,化為一般形式即可得解.【詳解】由題意,得平移后的拋物線為:即∴故答案為:4.【點睛】此題主要考查根據拋物線的平移規(guī)律求參數(shù),熟練掌握,即可解題.15、.【分析】根據概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】共個數(shù),大于的數(shù)有個,(大于);故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.16、【分析】連接AC交BD于O,作FG⊥BE于G,證出△BFG是等腰直角三角形,得出BG=FG=BF=,由三角形的外角性質得出∠AED=30°,由直角三角形的性質得出OE=OA,求出∠FEG=60°,∠EFG=30°,進而求出OA的值,即可得出答案.【詳解】連接AC交BD于O,作FG⊥BE于G,如圖所示則∠BGF=∠EGF=90°∵四邊形ABCD是正方形∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°∴△BFG是等腰直角三角形∴BG=FG=BF=∵∠ADB=∠EAD+∠AED,∠EAD=15°∴∠AED=30°∴OE=OA∵EF⊥AE∴∠FEG=60°∴∠EFG=30°∴EG=FG=∴BE=BG+EG=∵OA+AO=解得:OA=∴AB=OA=故答案為【點睛】本題考查了正方形和等腰直角三角形的性質,綜合性較強,需要熟練掌握相關性質.17、點C在圓外【分析】由r和CA,AB、DA的大小關系即可判斷各點與⊙A的位置關系.【詳解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半徑為4厘米,∴點C在圓A外【點睛】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內.18、k≤4且k≠1【分析】根據二次函數(shù)的定義和圖象與x軸有交點則△≥0,可得關于k的不等式組,然后求出不等式組的解集即可.【詳解】解:根據題意得k?1≠0且△=22?4×(k?1)×1≥0,解得k≤4且k≠1.故答案為:k≤4且k≠1.【點睛】本題考查了拋物線與x軸的交點問題:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2?4ac決定拋物線與x軸的交點個數(shù):△>0時,拋物線與x軸有2個交點;△=0時,拋物線與x軸有1個交點;△<0時,拋物線與x軸沒有交點.三、解答題(共78分)19、(1)3;(2);(3)【分析】設塔的頂層共有盞燈,根據題意列出方程,進行解答即可.參照題目中的解題方法進行計算即可.由題意求得數(shù)列的每一項,及前n項和Sn=2n+1-2-n,及項數(shù),由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,分別分別即可求得N的值【詳解】設塔的頂層共有盞燈,由題意得.解得,頂層共有盞燈.設,,即:.即由題意可知:20第一項,20,21第二項,20,21,22第三項,…20,21,22…,2n?1第n項,根據等比數(shù)列前n項和公式,求得每項和分別為:每項含有的項數(shù)為:1,2,3,…,n,總共的項數(shù)為所有項數(shù)的和為由題意可知:為2的整數(shù)冪,只需將?2?n消去即可,則①1+2+(?2?n)=0,解得:n=1,總共有,不滿足N>10,②1+2+4+(?2?n)=0,解得:n=5,總共有滿足,③1+2+4+8+(?2?n)=0,解得:n=13,總共有滿足,④1+2+4+8+16+(?2?n)=0,解得:n=29,總共有不滿足,∴【點睛】考查歸納推理,讀懂題目中等比數(shù)列的求和方法是解題的關鍵.20、(1),B點坐標為(3,0);(2)①;②.【分析】(1)由對稱軸公式可求得b,由A點坐標可求得c,則可求得拋物線解析式;再令y=0可求得B點坐標;(2)①用t可表示出ON和OM,則可表示出P點坐標,即可表示出PM的長,由矩形的性質可得ON=PM,可得到關于t的方程,可求得t的值;②由題意可知OB=OA,故當△BOQ為等腰三角形時,只能有OB=BQ或OQ=BQ,用t可表示出Q點的坐標,則可表示出OQ和BQ的長,分別得到關于t的方程,可求得t的值.【詳解】(1)∵拋物線對稱軸是直線x=1,∴﹣=1,解得b=2,∵拋物線過A(0,3),∴c=3,∴拋物線解析式為,令y=0可得,解得x=﹣1或x=3,∴B點坐標為(3,0);(2)①由題意可知ON=3t,OM=2t,∵P在拋物線上,∴P(2t,),∵四邊形OMPN為矩形,∴ON=PM,∴3t=,解得t=1或t=﹣(舍去),∴當t的值為1時,四邊形OMPN為矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直線AB解析式為y=﹣x+3,∴當t>0時,OQ≠OB,∴當△BOQ為等腰三角形時,有OB=QB或OQ=BQ兩種情況,由題意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ=,BQ=|2t﹣3|,又由題意可知0<t<1,當OB=QB時,則有|2t﹣3|=3,解得t=(舍去)或t=;當OQ=BQ時,則有=|2t﹣3|,解得t=;綜上可知當t的值為或時,△BOQ為等腰三角形.21、(1)見解析;(2)【分析】(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;(2)連接AC,可證AB=BC,由勾股定理可求出BD=.【詳解】(1)證明:∵∠ABD=90°,E是AD的中點,∴BE=DE=AE,∵AD=2BC,∴BC=DE,∵AD∥BC,∴四邊形BCDE為平行四邊形,∵BE=DE,∴四邊形BCDE為菱形;(2)連接AC,如圖,∵由(1)得BC=BE,AD∥BC,∴四邊形ABCE為平行四邊形,∵AC⊥BE,∴四邊形ABCE為菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD===.【點睛】本題考查菱形的判定和性質、直角三角形斜邊中線的性質、等腰三角形的判定,勾股定理等知識,解題的關鍵是熟練掌握菱形的判定方法22、見解析.【分析】連接BC,根據圓周角定理求出∠ACB=90°,求出OD⊥BC,根據垂徑定理求出即可.【詳解】證明:連接CB,∵AB為⊙O的直徑,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD過O,∴點D平分.【點睛】本題考查了圓周角定理和垂徑定理,能正確運用定理進行推理是解此題的關鍵.23、(1);(2)畫圖見解析,.【分析】(1)先由A類型的人數(shù)及其所占百分比求出總人數(shù),再用360乘以D類型人數(shù)占被調查人數(shù)的比例可得其對應圓心角度數(shù),利用各類型人數(shù)之和等于總人數(shù)求出B類型人數(shù),從而補全折線圖;(2)用A表示女生,B表示男生,畫樹狀圖得出所有等可能結果,從中找到符合條件的結果數(shù),再利用概率公式求解可得.【詳解】(1)∵被調查的總人數(shù)為48÷40%=120(人),∴扇形統(tǒng)計圖中D類所對應的圓心角度數(shù)為360×=,B類型人數(shù)為120?(48+24+6)=42(人),補全折線統(tǒng)計圖如下:故答案為:;(2)用A表示女生,B表示男生,畫樹狀圖共有20種情況,其中一男一女有12種情況,故抽到學生恰好是一男一女的概率【點睛】本題考查列表法與樹狀圖法、折線統(tǒng)計圖、扇形統(tǒng)計圖,解題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答問題.24、(1);(2)見解析【解析】(1)根據題意將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論