版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
3BoundaryValue
Problems3BoundaryValue
Problems1(1)Distributionproblems(2)Boundaryvalueproblems1.Thetypesofproblemsinelectrostaticfield2.Thecalculationmethodsofboundaryvalueproblems(1)Analyticalmethod(2)NumericalmethodBoundaryconditionsEquationsordq(1)Distributionproblems(2)B3.1TypesofBoundaryConditionsandUniquenessTheorem3.1TypesofBoundaryConditio
ConsideraregionVboundedbyasurfaceS.1.Dirichletboundaryconditionsspecifythepotentialfunctionontheboundary.wherefisacontinuousfunction.2.Neumannboundaryconditionsspecifythenormalderivativeofthepotentialfunctionontheboundary.wheregisacontinuousfunction.3.MixedboundaryconditionsThetypesofboundaryconditionsConsideraregionVbou
TheUniquenessTheoremTheuniquenesstheoremstatesthatthereisonlyone(unique)solutiontoPoisson’sorLaplace’sequationsatisfiedgivenboundaryconditions.
Poisson’sequationLaplace’sequationBoundaryconditionsTheUniquenessTheoremPois
Prove(proofbycontradiction)ConsideravolumeVboundedbysomesurfaceS.SupposethatwearegiventhechargedensitythroughoutVandthevalueofthescalarpotentialonsurfaceS.AssumethatthereexisttwosolutionsandofLaplace’sequationsubjecttothesameboundaryconditions.Then,Prove(proofbycontradict
and
LetthenApplyingGreen’sfirstidentity
Wehave
wherevolumeVboundedbytheenclosedsurfaceS.TheintegralisequaltozerosinceonthesurfaceS.Thus,TheintegralcanbezeroisifisaconstantWeknowthatonthesurfaceS,soweget第三課電磁場與電磁波英文版課件
Thatis,
ThroughoutVandonsurfaceS.OurinitialassumptionthatandaretwodifferentsolutionsofLaplace’sequations,satisfyingthesameboundaryconditions,turnsouttobeincorrect.Hence,thereisauniquesolutiontoLaplace’sequationsatisfiedgivenboundaryconditions.
Thatis,3.2DirectIntegrationNote:Thepotentialfieldisafunctionofonlyonevariable.3.2DirectIntegrationNote:TSolution
Sincethetwoconductorsofradiiaandbformequipotentialsurfaces,thepotentialmustbeafunctionofonly.Example3.2.1TheinnerconductorofradiusaofacoaxialcableisheldatapotentialofUwhiletheouterconductorofradiusbisgrounded.Determine(a)thepotentialdistributionbetweentheconductors,(b)thesurfacechargedensityontheinnerconductor,and(c)thecapacitanceperunitlength.SolutionExample3.2.1
Thus,Laplace’sequationreducesto
Integratingtwice,weobtain(1)whereandareconstantsofintegrationtobedeterminedfromtheboundaryconditions.
Substitutingandinto(1),wehave(2)
Substitutingandinto(1),wehave(3)Thus,Laplace’sequationrHence,thepotentialdistributionwithintheconductorsisTheelectricfieldintensityisThus,ThenormalcomponentofDatisequaltothesurfacechargedensityontheinnerconductor.Thus,Hence,thepotentialdistribut
ThechargeperunitlengthontheinnerconductorisFinally,weobtainthecapacitanceperunitlengthas
1Finally,weobtainthecapaproblemTheinnerconductorofradiusaofacoaxialcableisheldatapotentialofUwhiletheouterconductorofradiusbisgrounded.Thespacebetweentheconductorsisfilledwithtwoconcentriclayersofdielectric.Determine(a)thepotentialdistributionbetweentheconductorsand(b)blemExample3.2.2Asphericalcapacitorisformedbytwoconcentricsphericalshellsofradiiaandb,asshowninFigure3.2.2.TheregionbetweentheinnerandoutersphericalconductorsisfilledwithadielectricofpermittivityIfUisthepotentialdifferencebetweenthetwoconductors,determine(a)thepotentialdistributionbetweentheconductors,and(b)thecapacitanceofthesphericalcapacitor.Example3.2.2Solution
Sincethetwoconductorsofradiiaandbformequipotentialsurfaces,thepotentialmustbeafunctionofonly.Thus,Laplace’sequationreducesto(a<r<b)Integratingtwice,weobtainwhereC1andC2areconstantsofintegrationtobedeterminedfromtheboundaryconditions.(1)Solution(a<r<b)IntegratingSubstitutingboundaryconditionsandinto(1),weobtain
ThenormalcomponentofDatyieldsthesurfacechargedensityontheinnerconductor.Thus,Hence,thecapacitanceofthesystemisSubstitutingboundarycondi通解例體電荷均勻分布在一球形區(qū)域內(nèi),求電位及電場。解:采用球坐標系,分區(qū)域建立方程邊界條件參考電位圖1.4.2體電荷分布的球體0通解例體電荷均勻分布在一球形區(qū)域內(nèi),求電位及電場。解:電場強度(球坐標梯度公式):得到圖隨r變化曲線0電場強度(球坐標梯度公式):得到圖隨r變化曲線03.3SeparationofVariablesSolveLaplace’sequationTransformthethree-dimensionalpartialdifferentialequationintothreeone-dimensionalordinarydifferentialequations.3.3SeparationofVariablesSo
1.SeparationofVariablesforRectangularCoordinateSystemLaplace’sequationis
(1)Assumethatthepotentialcanbewrittenastheproductofone-dimensionalpotentials.(2)
whereisafunctionofxonly,isafunctionofyonlyandisafunctionofzonly.Substituting(2)into(1),andthendividingby
weobtain1.SeparationofVariables
(3)Sinceeachterminvolvesasinglevariable,theequationisrightifandonlyif
eachtermmustbeaconstant.Thus,welet
where,andarecalledtheseparationconstants.Note:Theformofgeneralsolutiontoeachequationdependsontheseparationconstant.where,andarTheformofsolutionofasfollows.1.Ifisarealnumber,thegeneralsolutionis
2.Ifisaimaginarynumberthegeneralsolutionis
3.Ifkxiszero,then
orwhereA1,A2,B1,B2,C1,C2,D1andD2arearbitraryconstants.hyperbolicsinehyperboliccosineTheformofsolutionof
Example3.3.1Aninfinitelylongrectangulartroughisformedbyfourconductingplanes,locateatandaandandbinair,asshowninFigure3.3.1.ThesurfaceatisatpotentialofU,theotherthreeareatzeropotential.Determinethepotentialdistributioninsidetherectangulartrough.
Two-dimensionalfieldExample3.3.1Two-dimension
Solution
Sincethetroughisinfinitelylonginthez-direction,thepotentialcanonlydependonxandy.Laplace’sequationreducesto(1)Let(2)Substituting(2)in(1)anddividingby(2),weget
LetThen,wehaveorSolutionLetThen,wehaveo
Solution
Sincethetroughisinfinitelylonginthez-direction,thepotentialcanonlydependonxandy.Laplace’sequationreducesto
Usingseparationofvariables,welet
Then,wehaveorSincetheboundaryconditionsareatandwecanassumeandTheformofgeneralsolutionofthepotentialiswhereA1,A2,B1andB2arearbitraryconstants.SolutionwhereA1,A2,B1TheconditionforallrequiresthenTheconditionforallrequiresthenTheconditionforallrequires
Thus,weassumethatthegeneralsolutionisTheconditionforallrequiresTheconditionLet
ThisisaFouriersineseries.Thecoefficientsaredeterminedby第三課電磁場與電磁波英文版課件WecangetThus,thegeneralsolutionofthepotentialis第三課電磁場與電磁波英文版課件第三課電磁場與電磁波英文版課件
Example3.3.2Twosemi-infiniteconductingplatesseparateddaregrounded,asshowninFigure.AconductingplatebetweentwoplatesisheldatapotentialU0.Findthepotentialbetweenthetwoconductingplates.SolutionThepotentialcanonlydependonxandy.Laplace’sequationreducesto(1)Example3.3.2Solution(1)
Let(2)Substituting(2)in(1)anddividingby(2),weget
LetTheformofgeneralsolutionofthepotentialisLet
Usingseparationofvariables,wecanwritetheformofthesolutionas
whereandseparationconstantkaredeterminedbytheboundaryconditions.SolutionThepotentialcanonlydependonxandy.Laplace’sequationreducesto(1)Solution(1)TheconditionforallrequiresTheconditionforallrequires
SincethepotentialisequaltozeroatandweobtainTheformofthegeneralsolutionreducesto
TheconditionforallrequiresThecondition
ThisisaFouriersineseries.Thecoefficientsaredeterminedby
Thus,thegeneralsolutionofthepotentialis
第三課電磁場與電磁波英文版課件
2.SeparationofVariablesforCylindricalCoordinateSystem(two-dimensionalfield)AssumethatthepotentialisthefunctionwithrespecttoandTheLaplace’sequationis
(2)(1)Let(4)Substituting(2)into(1),weobtainandthenmultiplyingbyweobtain(3)2.SeparationofVariablesInmanyproblems,thepotentialisafunctionwithrespecttowithaperiod.Thatis(7)Thus,kmustbeaninteger.Taking(6)becomes(8)Eachtermmustbeaconstant.Thus,welet(5a)
(5b)Solving(5b),wehave(6)Inmanyproblems,thepotentiaSubstitutingnfork,theequation(5a)
becomes
(9)
ThisisanEulerequationandthesolutionis(10)Thus,thegeneralsolutioncanbewrittenasn2Substitutingnfork,the
Example3.3.3Averylongdielectriccylinderofradiusaisalongzaxisinauniformelectricfieldwhichisinthedirectionofxaxis.Determinethepotentialandtheelectricfieldintensity.
Example3.3.3SolutionTheformofthesolutionoftheLaplace’sequationisTheboundaryconditionsareasfollows.(1)when(2)whenisfinite.(3)when(4)when(1)(2)Solution(1)(2)Fromboundarycondition(1),wehaveThus,
LetthenBoundarycondition(2)requiresThus,Usingcondition(3),weobtain(3)Fromboundarycondition(1),wThus,LetwehaveThen,thepotentialisFromcondition(4),wehave(4)(6)(5)(4)(6)(5)Solving(5)and(6),weobtainThus,thepotentialsareUsingSolving(5)and(6),weobtainWeobtainE2E0exWeobtainE2E0ex圖均勻外電場中介質(zhì)圓柱內(nèi)外的電場圖均勻外電場中介質(zhì)圓柱內(nèi)外的電場
3.SeparationofVariablesforSphericalCoordinateSystem(two-dimensionalfield)AssumethatthepotentialisthefunctionwithrespectivetorandTheLaplace’sequationreducesto(1)Let(2)Substituting(2)into(1),weobtain(3)r2r2f(r)3.SeparationofVariablesMultiplyingbyweobtain(4)
Let(5a)(5b)
Let(5b)becomes(6)
ThisisthegeneralizedLegendreequation.(勒讓德方程)MultiplyingbyTake(7)
ThesolutionsareLegendrepolynomials
(8)TakeTheformertermsoftheare(9a)(9b)(9c)
(9d)(9e)
(9f)Theformertermsofthe第三課電磁場與電磁波英文版課件
Consider(5a).(10)
Thesolutionis(11)Thus,thepotentialis(12)
Constantsandaredeterminedbytheboundaryconditions.Consider(5a).
Example3.3.4Adielectricsphereofradiusaisinauniformelectricfieldwhichisinthedirectionofzaxis,asinshowninFigure3.3.5.Determinethepotentialandtheelectricfieldintensity.Example3.3.4
SolutionTheformofthesolutionoftheLaplace’sequationis
and
Useboundaryconditionstodetermineconstants.
(1)when
TheexpressionsofthefieldshaveonlythefirsttermThatis,(1)(2)(3)C1=-E0Solution(1)(2)(3)C1=-E(2)whenisfinitevalue.So(3)when(5)(4)whenweobtain
(7)Solving(5)and(7),weobtainn=1(4)(6)andThepotentialis(2)when
Thus,thepotentialsare
UsingweobtainThus,thepotentialsare圖均勻場中放進了介質(zhì)球的電場E0ez圖均勻場中放進了介質(zhì)球的電場E0ezAconductingsphereofradiusaisinauniformelectricfieldwhichisinthedirectionofzaxis,asinshowninFigure.Determinethepotentialandtheelectricfieldintensity.Aconductingsphereofradius3.4MethodofImages3.4MethodofImages
Example3.4.1Supposethatapointchargeqislocatedabovethesurfaceofaninfiniteconductingplaneandgrounded,asshowninFigure.Determine(a)theelectricpotentialandelectricfieldintensityabovetheplane,and(b)thetotalchargeinducedonthesurfaceoftheconductingplane.yzExample3.4.1yzAnelectricdipole:(1)Thepotentialatanypointonthebisectingplaneiszero,(2)Theelectricfieldintensityisnormaltotheplane.yzTheimaginarycharge–qissaidtobe
theimageoftherealcharge+qAnelectricdipole:yzTheimag
Solution(methodofimages)Theboundaryconditionis.Placeanimaginarycharge
–qat(0,0,-d)andtemporarilyignoretheexistenceoftheplane.ThepotentialatanypointPabovetheplaneis(zeropotentialatinfinity)TheelectricfieldintensityisSolution(methodofimages
whereand
ThenormalcomponentoftheDfieldmustbeequaltothesurfacechargedensityonthesurfaceoftheconductor.+d-dThus,thetotalchargeinducedonthesurfaceis+d-dThus,thetotalcharge
Basicprinciple(1)Imagechargesreplacethetotalchargeinduced.(2)Maintainthefieldequationandoriginalboundaryconditions.(3)Usetherealandimagechargestodeterminethefield.
Note:(1)Imagechargesarelocatedoutsidethefieldregion.(remainfieldequation)(2)Determinethenumber,magnitudeandpositionoftheimagecharges.BasicprincipleThenumberofimagechargesisThenumberofimagechargesis
Example3.4.2Apointchargeqislocatedatadistancedfromthecenterofagroundedconductingsphereofradiusa,asshowninFigure3.4.2.Computethesurfacechargedensityonthesurfaceoftheconductingsphere.Example3.4.2
Solution(methodofimages)TheboundaryconditionisPlaceanimaginarychargeat(0,0,d’)withinthesphere.Nowwetemporarilyignoretheexistenceoftheconductingsphere.ThepotentialoutsidethesphereisSolution(methodofimages
Fromtheboundaryconditions,weobtainSquaringbothsidesThisisanidentitywithrespectto.Thus,
Solvingtheseequations,weget
and第三課電磁場與電磁波英文版課件Chooseand.Thus,thepotentialoutsidethesphereis
SincethenormalcomponentoftheDfieldmustbeequaltothesurfacechargedensityonthesurfaceoftheconductor,wehaveChooseandThus,thetotalchargeinducedonthesurfaceisThus,thetotalchargeinduced圖球外的電場分布圖球外的電場分布(1)Apointchargeqisplacedatadistancedfromthecenterofaconductingsphereofradiusa.圖不接地金屬球的鏡像(2)AconductingsphereofradiusahasachargeofQ.Apointchargeqisplacedatadistancedfromthecenterofthesphere.qdaConsider圖點電荷位于不接地導體球附近的場圖(1)Apointchargeqisplaced
Example3.4.5
Theplaneistheinterfacebetweentwodifferentdielectrics,asshowninFigure(a).Apointchargeqislocatedabovetheinterface.Determinethepotentialintworegions.
(a)(b)(c)Example3.4.5(b)(c)
SolutionTheboundaryconditionsareandattheplaneRegion1:Placeanimaginarychargeat(0,0,-d).Wetemporarilyassumethepermittivityofmedium2isalsoThepotentialatanypointPinregion1isSolutionRegion2:Wesuperposeanimaginarychargeonthechargeq.Wetemporarilyassumethepermittivityofmedium1isalsoThepotentialatanypointPinregion2is
Region2:WesuperposeanAnypointontheinterfacesatisfiesFromboundaryconditions,wehaveSolvingtheseequations,weobtain
AnypointontheinterfacesatThus,thepotentialatanypointinregion1isThepotentialatanypointinRegion2is
Thus,thepotentialatanypoi第三課電磁場與電磁波英文版課件
Example3.4.2Alongstraightlinechargeisparallelalongstraightgroundedwireofradiusa,asshowninFigure.Calculatethepotentialinspace.Example3.4.2第三課電磁場與電磁波英文版課件
Solution(methodofimages)Placeanimaginarylinechargeonthey=0planewithinthewire.isparallelto.Temporarilyremovethewire.ThepotentialatanypointPis
Sincethelongstraightwireofradiusaisgrounded,thepotentialsatpointsAandB
areequaltozero.Solution(methodofimages
Thus,wehaveThus,wehaveLetWeobtainandThus,thepotentialatanypointPis
Trialsolution試探解LetTrialsolution試探解
Thesurfacechargedensityonthesurfaceofthewireis
ThechargeinducedperunitlengthonthesurfaceisMethodofelectricaxisThesurfacechargedensity
Example3.4.4Twoparallelcylindricalconductorsofradiusaseparatedadistance2dformtransmissionline,asshowninFigure.Calculatethecapacitanceperunitlengthoftwocylindricalconductors.yxExample3.4.4yx
Solution
Usingmethodofelectricaxis,thepotentialatanypointoutsideoftheconductorsis
ThepotentialatApointis
ThepotentialatBpointis
Thepotentialdifferenceisyx(C=0zeroreferenceat
yaxis)
Solutionyx(C=0zerorefer
Thecapacitanceperunitlengthoftwocylindricalconductorsis
Whenweobtainyxyx第三課電磁場與電磁波英文版課件Twolongstraightlineswithequalandoppositebutuniformchargedistributionsareseparatedbyadistanceof2b.Findthepotentialinfreespace.(C=0,zeroreferenceat
yaxis)
LetTwolongstraightlineswitheAsetofeccentriccirclesThus,weobtainTheequationofequipotentiallinesiscenterRadiusWhentheradiusisacircleAsetofeccentriccirclesThus根據(jù),得到Ex和Ey分量LinesofforcesofE根據(jù),得到Ex和E例不同半徑兩平行長直導線(傳輸線)相距為d,確定電軸位置,單位長度的電容。圖不同半徑傳輸線的電軸位置解:例不同半徑兩平行長直導線(傳輸線)相距為d,確定電軸位ABAB
鏡像法(電軸法)的理論基礎是:鏡像法(電軸法)的實質(zhì)是:鏡像法(電軸法)的關鍵是:鏡像電荷(電軸)只能放在待求場域以外的區(qū)域。疊加時,要注意場的適用區(qū)域。用虛設的鏡像電荷(電軸)替代未知電荷的分布,使計算場域為無限大均勻媒質(zhì);靜電場惟一性定理;確定鏡像電荷(電軸)的個數(shù)、大小及位置;應用鏡像法(電軸法)解題時,注意:鏡像法(電軸法)的理論基礎是:鏡像法(電軸法)的實質(zhì)是3.5TheFinite-DifferenceMethod(FDM)3.5TheFinite-DifferenceMet
Numericalmethods:
finite-differencemethod(FDM),finiteelementmethod(FEM),methodofmoments(MOM).
Thefinite-differencemethod(FDM)
Numericalmethods:基本思想:將場域離散為許多網(wǎng)格,應用差分原理,將求解連續(xù)函數(shù)的微分方程問題轉(zhuǎn)換為求解網(wǎng)格節(jié)點上的代數(shù)方程組的問題。Dividethesolutiondomainintofinitediscretepointsandreplacethepartialdifferentialequationwithasetofdifferenceequations.基本思想:將場域離散為許多網(wǎng)格,應用差分原理,將求Ifthepotentialvariationisindependentofz,Poisson’sequationsimplifiesto
(1)First,wedividetheregionintoafinitenumberofmeshes.Letusconsiderasquaremeshsurroundingapoint0.Ifthepotentialvariation
Letthepotentialatpoint0beequaltoandatthefoursurroundingpointsandThepotentialatpoint1,usingtheTaylorseriesexpansion,is
wherehisthemeshsize.andthepotentialatpoint3isLetthepotentialatpointThus,wehaveOmittinghighorderterms,weobtain
(2)Similarly,weget(3)Adding(2)and(3),weobtain(4)
Thus,wehaveSubstituting(1)into(4),wehave
Thus,thepotentialatpoint0isIncharge-freeregion,thepotentialatpoint0is
Thepotentialatapointmustbetheaverageofthepotentialatthefoursurroundingpoint.
Substituting(1)into(4),weExample
Arectangulartroughisformedbyfourconductingplanes.Therectangulartroughisinfinitelylonginthez-direction.Thesidesandbottomofthetroughareatzeropotential.Thelidisatapotentialof100V.Wedividetheregioninto16squares.Example第三課電磁場與電磁波英文版課件
Initerativemethod,thepotentialforthe(n+1)thiterationatnode(k
j,)is
Initerativemethod,thep
Successiveover-relaxation(SOR)iterativemethod
whereiscalledaccelerationfactor.Gauss-Seideliterativemethod高斯—賽德爾迭代法逐次超松弛迭代法迭代過程直到節(jié)點電位滿足為止。收斂速度與電位初始值及網(wǎng)格剖分粗細有關;迭代次數(shù)與工程精度有關。Successiveover-relaxation邊界節(jié)點賦已知電位值賦節(jié)點電位初始值累計迭代次數(shù)n=0n=n+1按超松弛法進行一次迭代,求打印NoYes程序框圖下頁上頁返回邊界節(jié)點賦已知電位值賦節(jié)點電位初始值累計迭代次數(shù)n=0上機作業(yè)要求:1.試用超松弛迭代法求解接地金屬槽內(nèi)電位的分布。給定邊值:如圖示;已知:計算:迭代次數(shù)N=?,分布。給定初值:誤差范圍:下頁上頁返回圖接地金屬槽的網(wǎng)格剖分上機作業(yè)要求:1.試用超松弛迭代法求解接地金屬槽內(nèi)電位的有限差分法有限元法邊界元法矩量法積分方程法積分法分離變量法鏡像法、電軸法微分方程法保角變換法計算法實驗法解析法數(shù)值法實測法模擬法邊值問題有限差分法有限元法邊界元法矩量法積分方程法積分法分離變量法鏡3BoundaryValue
Problems3BoundaryValue
Problems109(1)Distribu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷售總結(jié)課件教學課件
- 紅火蟻的預防與治療
- 教育培訓機構(gòu)的年終總結(jié)
- 第二章 相互作用-三種常見力 2025年高考物理基礎專項復習
- 侵襲性肺曲霉菌病診治指南
- 氧化碳的制取的研究說課稿
- 好玩的磁鐵說課稿
- 農(nóng)村水上運動中心建設合同協(xié)議書
- 污水處理廠標識系統(tǒng)招投標文件
- 投資合伙人合同協(xié)議書
- 2024-2030年飛機租賃行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預測報告
- 2025屆高考英語3500詞匯基礎+提升練01含解析
- 食源性疾病培訓內(nèi)容知識
- 2024年中級經(jīng)濟師(金融)《專業(yè)知識與實務》考前必刷必練題庫500題(含真題、必會題)
- 2024江蘇省鐵路集團限公司春季招聘24人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- (2024年)剪映入門教程課件
- 大班-數(shù)學-加號減號-課件(基礎版)
- 中大班社會領域《我的情緒小屋》課件
- DB44-T 1661-2021《河道管理范圍內(nèi)建設項目技術(shù)規(guī)程》-(高清現(xiàn)行)
- 藥學專業(yè)高水平專業(yè)群建設項目建設方案
- 北京大學數(shù)字圖像處理(岡薩雷斯)(課堂PPT)
評論
0/150
提交評論