2022年安徽省銅陵市樅陽縣重點中學中考數(shù)學四模試卷含解析_第1頁
2022年安徽省銅陵市樅陽縣重點中學中考數(shù)學四模試卷含解析_第2頁
2022年安徽省銅陵市樅陽縣重點中學中考數(shù)學四模試卷含解析_第3頁
2022年安徽省銅陵市樅陽縣重點中學中考數(shù)學四模試卷含解析_第4頁
2022年安徽省銅陵市樅陽縣重點中學中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是52.每個人都應懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關于用水量的統(tǒng)計量不會發(fā)生改變的是()用水量x(噸)34567頻數(shù)1254﹣xxA.平均數(shù)、中位數(shù)B.眾數(shù)、中位數(shù)C.平均數(shù)、方差D.眾數(shù)、方差3.下列運算正確的是()A.=x5 B. C.·= D.3+24.6的絕對值是()A.6 B.﹣6 C. D.5.若,則括號內的數(shù)是A. B. C.2 D.86.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>27.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.228.已知一次函數(shù)y=﹣2x+3,當0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣79.若關于x的不等式組只有5個整數(shù)解,則a的取值范圍()A. B. C. D.10.估計5﹣的值應在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間二、填空題(本大題共6個小題,每小題3分,共18分)11.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋12.圓錐的底面半徑為2,母線長為6,則它的側面積為_____.13.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當?shù)拈L度最小時,的長為__________.14.若n邊形的內角和是它的外角和的2倍,則n=.15.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.16.因式分解:________.三、解答題(共8題,共72分)17.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.18.(8分)工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)求長方體底面面積為12dm2時,裁掉的正方形邊長多大?19.(8分)如圖,沿AC方向開山修路.為了加快施工進度,要在小山的另一邊同時施工,從AC上的一點B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開挖點E離D多遠正好使A,C,E三點在一直線上(取1.732,結果取整數(shù))?20.(8分)主題班會上,王老師出示了如圖所示的一幅漫畫,經過同學們的一番熱議,達成以下四個觀點:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理競爭,合作雙贏.要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:觀點頻數(shù)頻率Aa0.2B120.24C8bD200.4(1)參加本次討論的學生共有人;表中a=,b=;(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);(3)現(xiàn)準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.21.(8分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.22.(10分)為了掌握我市中考模擬數(shù)學試題的命題質量與難度系數(shù),命題教師赴我市某地選取一個水平相當?shù)某跞昙夁M行調研,命題教師將隨機抽取的部分學生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調查共隨機抽取了該年級多少名學生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學生中,考試成績評為“B”的學生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學談談做題的感想,請你用列表或畫樹狀圖的方法求出所選兩名學生剛好是一名女生和一名男生的概率.23.(12分)解分式方程:x+1x-1-24.(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D2、B【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結合前兩組的頻數(shù)知第6、7個數(shù)據(jù)的平均數(shù),可得答案.【詳解】∵6噸和7噸的頻數(shù)之和為4-x+x=4,∴頻數(shù)之和為1+2+5+4=12,則這組數(shù)據(jù)的中位數(shù)為第6、7個數(shù)據(jù)的平均數(shù),即5+52∴對于不同的正整數(shù)x,中位數(shù)不會發(fā)生改變,∵后兩組頻數(shù)和等于4,小于5,∴對于不同的正整數(shù)x,眾數(shù)不會發(fā)生改變,眾數(shù)依然是5噸.故選B.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)的定義和計算方法是解題的關鍵.3、B【解析】

根據(jù)冪的運算法則及整式的加減運算即可判斷.【詳解】A.=x6,故錯誤;B.,正確;C.·=,故錯誤;D.3+2不能合并,故錯誤,故選B.【點睛】此題主要考查整式的加減及冪的運算,解題的關鍵是熟知其運算法則.4、A【解析】試題分析:1是正數(shù),絕對值是它本身1.故選A.考點:絕對值.5、C【解析】

根據(jù)有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù),可得答案.【詳解】解:,

故選:C.【點睛】本題考查了有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù).6、D【解析】試題分析:觀察函數(shù)圖象得到當﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結合思想的應用.7、B【解析】

直接利用平行四邊形的性質得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【點睛】平行四邊形的性質掌握要熟練,找到等值代換即可求解.8、B【解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內函數(shù)值的最大值.【詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內,x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【點睛】本題考查了一次函數(shù)y=kx+b的圖象的性質:①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、A【解析】

分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數(shù)解,則不等式組的解集為3-2a<x<20,且整數(shù)解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個整數(shù)解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點睛】本題主要考查對不等式的性質,解一元一次不等式,一元一次不等式組的整數(shù)解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.10、C【解析】

先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應在7和8之間,故選C.【點睛】本題考查了估算無理數(shù)的大小,解決本題的關鍵是估算出無理數(shù)的大?。?、填空題(本大題共6個小題,每小題3分,共18分)11、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.12、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側面積公式求出它的側面積.解:根據(jù)圓錐的側面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.13、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據(jù)“等腰三角形三線合一”可得,因為,所以.在中,根據(jù)勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據(jù)翻折的性質可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結合直角三角形勾股定理、等邊三角形性質求得此時CQ的長度即可.14、6【解析】此題涉及多邊形內角和和外角和定理多邊形內角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=615、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點B和點D關于直線AC對稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點評:考查正方形的性質和軸對稱及勾股定理等知識的綜合應用.16、n(m+2)(m﹣2)【解析】

先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關鍵三、解答題(共8題,共72分)17、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.18、裁掉的正方形的邊長為2dm,底面積為12dm2.【解析】試題分析:設裁掉的正方形的邊長為xdm,則制作無蓋的長方體容器的長為(10-2x)dm,寬為(6-2x)dm,根據(jù)長方體底面面積為12dm2列出方程,解方程即可求得裁掉的正方形邊長.試題解析:設裁掉的正方形的邊長為xdm,由題意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的邊長為2dm,底面積為12dm2.19、450m.【解析】

若要使A、C、E三點共線,則三角形BDE是以∠E為直角的三角形,利用三角函數(shù)即可解得DE的長.【詳解】解:,,,在中,,,,.答:另一邊開挖點離,正好使,,三點在一直線上.【點睛】本題考查的知識點是解直角三角形的應用和勾股定理的運用,解題關鍵是是熟記含30°的直角三角形的性質.20、(1)50、10、0.16;(2)144°;(3).【解析】

(1)由B觀點的人數(shù)和所占的頻率即可求出總人數(shù);由總人數(shù)即可求出a、b的值,(2)用360°乘以D觀點的頻率即可得;(3)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解【詳解】解:(1)參加本次討論的學生共有12÷0.24=50,則a=50×0.2=10,b=8÷50=0.16,故答案為50、10、0.16;(2)D所在扇形的圓心角的度數(shù)為360°×0.4=144°;(3)根據(jù)題意畫出樹狀圖如下:由樹形圖可知:共有12中可能情況,選中觀點D(合理競爭,合作雙贏)的概率有6種,所以選中觀點D(合理競爭,合作雙贏)的概率為.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、﹣6+2【解析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.22、(1)50(2)420(3)P=【解析】試題分析:(1)首先根據(jù)題意得:本次調查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則可求得第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);即可補全統(tǒng)計圖;(2)由題意可求得130~145分所占比例,進而求出答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩名學生剛好是一名女生和一名男生的情況,再利用概率公式求解即可求得答案.試題解析:(1)根據(jù)題意得:本次調查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);如圖:(2)根據(jù)題意得:考試成績評為“B”的學生大約有×1600=448(名),答:考試成績評為“B”的學生大約有448名;(3)畫樹狀圖得:∵共有16種等可能的結果,所選兩名學生剛好是一名女生和一名男生的有8種情況,∴所選兩名學生剛好是一名女生和一名男生的概率為:=.考點:1、樹狀圖法與列表法求概率的知識,2、直方圖與扇形統(tǒng)計圖的知識HYPERLINK"/console//media/IUz2F7VbqZmnulv3tDz3Cs_SpYfvRKvby8HkcUi4fRNVoSsCiEPrmr96gJVbSP8lniR3H-0m4ZCHsYQbUst

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論