版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為4的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D′處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為()A.(,2) B.(4,1) C.(4,) D.(4,)2.如圖,在⊙O中,弦BC=1,點(diǎn)A是圓上一點(diǎn),且∠BAC=30°,則的長(zhǎng)是()A.π B. C. D.3.《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專(zhuān)著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書(shū)中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長(zhǎng)1尺(AB=1尺=10寸)”,問(wèn)這塊圓形木材的直徑是多少?”如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸4.直線(xiàn)y=3x+1不經(jīng)過(guò)的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖,等腰△ABC中,AB=AC=10,BC=6,直線(xiàn)MN垂直平分AB交AC于D,連接BD,則△BCD的周長(zhǎng)等于()A.13 B.14 C.15 D.166.如圖,A,B兩點(diǎn)分別位于一個(gè)池塘的兩端,小聰想用繩子測(cè)量A,B間的距離,但繩子不夠長(zhǎng),一位同學(xué)幫他想了一個(gè)主意:先在地上取一個(gè)可以直接到達(dá)A,B的點(diǎn)C,找到AC,BC的中點(diǎn)D,E,并且測(cè)出DE的長(zhǎng)為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m7.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為()cm.A. B. C. D.8.下列二次根式中,與是同類(lèi)二次根式的是()A. B. C. D.9.下列圖案中,是軸對(duì)稱(chēng)圖形但不是中心對(duì)稱(chēng)圖形的是()A. B. C. D.10.某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線(xiàn)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是()A.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”B.?dāng)S一枚質(zhì)地均勻的正六面體骰子,向上一面的點(diǎn)數(shù)是4C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃D.拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上11.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個(gè)銳角之和一定是鈍角D.相等的兩個(gè)角是對(duì)頂角12.如圖,在?ABCD中,AB=1,AC=4,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,點(diǎn)E是BC的中點(diǎn),連接AE交BD于點(diǎn)F.若AC⊥AB,則FD的長(zhǎng)為()A.2 B.3 C.4 D.6二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知整數(shù)k<5,若△ABC的邊長(zhǎng)均滿(mǎn)足關(guān)于x的方程,則△ABC的周長(zhǎng)是.14.?dāng)?shù)據(jù)﹣2,0,﹣1,2,5的平均數(shù)是_____,中位數(shù)是_____.15.某種商品因換季準(zhǔn)備打折出售,如果按定價(jià)的七五折出售將賠25元,而按定價(jià)的九折出售將賺20元,則商品的定價(jià)是______元16.如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.17.如圖,已知l1∥l2∥l3,相鄰兩條平行直線(xiàn)間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.18.如圖,直線(xiàn)l1∥l2∥l3,直線(xiàn)AC分別交l1,l2,l3于點(diǎn)A,B,C;直線(xiàn)DF分別交l1,l2,l3于點(diǎn)D,E,F(xiàn).AC與DF相交于點(diǎn)H,且AH=2,HB=1,BC=5,則DEEF的值為三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,?ABCD的邊CD為斜邊向內(nèi)作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點(diǎn)E在平行四邊形內(nèi)部,連接AE、BE,求∠AEB的度數(shù).20.(6分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點(diǎn),過(guò)點(diǎn)G作DE⊥BC,垂足為E,交BA的延長(zhǎng)線(xiàn)于點(diǎn)D(1)求證:DE是的⊙O切線(xiàn);(2)若AB=6,BG=4,求BE的長(zhǎng);(3)若AB=6,CE=1.2,請(qǐng)直接寫(xiě)出AD的長(zhǎng).21.(6分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點(diǎn)為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長(zhǎng).22.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問(wèn)題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問(wèn)題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線(xiàn)AE的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,直線(xiàn)DF交AB于點(diǎn)H,直線(xiàn)FB與直線(xiàn)AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線(xiàn)段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開(kāi)了討論:小敏:根據(jù)軸對(duì)稱(chēng)的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線(xiàn)段CG∥DF,請(qǐng)你說(shuō)明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫(xiě)出結(jié)果(用含α的式子表示).23.(8分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個(gè)相距50米的涼亭,小亮在河對(duì)岸D處測(cè)得∠ADP=60°,然后沿河岸走了110米到達(dá)C處,測(cè)得∠BCP=30°,求這條河的寬.(結(jié)果保留根號(hào))24.(10分)如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)25.(10分)已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).求一次函數(shù)和反比例函數(shù)的解析式;求△AOB的面積;觀(guān)察圖象,直接寫(xiě)出不等式kx+b﹣>0的解集.26.(12分)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長(zhǎng)DE交⊙O于點(diǎn)F,延長(zhǎng)DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;(2)過(guò)點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?7.(12分)定義:在三角形中,把一邊的中點(diǎn)到這條邊的高線(xiàn)的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點(diǎn),AE⊥BC于E,則線(xiàn)段DE的長(zhǎng)叫做邊BC的中垂距.(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學(xué)依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線(xiàn),求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點(diǎn)E為邊CD的中點(diǎn),連結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,連結(jié)AC.求△ACF中邊AF的中垂距.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故選:D.【點(diǎn)睛】本題考查正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識(shí)別圖形是解題關(guān)鍵.2、B【解析】
連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長(zhǎng)公式計(jì)算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長(zhǎng)=,故選B.【點(diǎn)睛】考查弧長(zhǎng)公式,等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),屬于中考常考題型.3、C【解析】分析:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點(diǎn)睛:本題考查垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題4、D【解析】
利用兩點(diǎn)法可畫(huà)出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線(xiàn)與x軸交于點(diǎn)(-,0),與y軸交于點(diǎn)(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過(guò)第四象限,故選:D.【點(diǎn)睛】本題主要考查一次函數(shù)的性質(zhì),正確畫(huà)出函數(shù)圖象是解題的關(guān)鍵.5、D【解析】
由AB的垂直平分MN交AC于D,根據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì),即可求得AD=BD,又由△CDB的周長(zhǎng)為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵M(jìn)N是線(xiàn)段AB的垂直平分線(xiàn),∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長(zhǎng)=AC+BC=10+6=16,故選D.【點(diǎn)睛】此題考查了線(xiàn)段垂直平分線(xiàn)的性質(zhì),比較簡(jiǎn)單,注意數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.6、D【解析】
根據(jù)三角形的中位線(xiàn)定理即可得到結(jié)果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點(diǎn)睛】本題考查的是三角形的中位線(xiàn),解答本題的關(guān)鍵是熟練掌握三角形的中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊,并且等于第三邊的一半.7、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進(jìn)而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線(xiàn)長(zhǎng)為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個(gè)圓錐的高為:(cm).故選B.點(diǎn)睛:此題主要考查了圓錐的計(jì)算,正確得出圓錐的半徑是解題關(guān)鍵.8、C【解析】
根據(jù)二次根式的性質(zhì)把各個(gè)二次根式化簡(jiǎn),根據(jù)同類(lèi)二次根式的定義判斷即可.【詳解】A.|a|與不是同類(lèi)二次根式;B.與不是同類(lèi)二次根式;C.2與是同類(lèi)二次根式;D.與不是同類(lèi)二次根式.故選C.【點(diǎn)睛】本題考查了同類(lèi)二次根式的定義,一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開(kāi)方數(shù)相同,就把這幾個(gè)二次根式叫做同類(lèi)二次根式.9、D【解析】分析:根據(jù)軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)圖形的概念分別分析得出答案.詳解:A.是軸對(duì)稱(chēng)圖形,也是中心對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;B.不是軸對(duì)稱(chēng)圖形,也不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;C.不是軸對(duì)稱(chēng)圖形,是中心對(duì)稱(chēng)圖形,故此選項(xiàng)錯(cuò)誤;D.是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的概念.軸對(duì)稱(chēng)圖形的關(guān)鍵是尋找對(duì)稱(chēng)軸,圖形沿對(duì)稱(chēng)軸折疊后可重合;中心對(duì)稱(chēng)圖形是要尋找對(duì)稱(chēng)中心,圖形旋轉(zhuǎn)180°后與原圖形重合.10、B【解析】
根據(jù)統(tǒng)計(jì)圖可知,試驗(yàn)結(jié)果在0.17附近波動(dòng),即其概率P≈0.17,計(jì)算四個(gè)選項(xiàng)的概率,約為0.17者即為正確答案.【詳解】解:在“石頭、剪刀、布”的游戲中,小明隨機(jī)出剪刀的概率是,故A選項(xiàng)錯(cuò)誤,擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點(diǎn)數(shù)是4的概率是≈0.17,故B選項(xiàng)正確,一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃得概率是,故C選項(xiàng)錯(cuò)誤,拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上的概率是,故D選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】此題考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.11、B【解析】
利用對(duì)頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義分別判斷后即可確定正確的選項(xiàng).【詳解】A、若a2=b2,則a=±b,錯(cuò)誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個(gè)銳角的和不一定是鈍角,故錯(cuò)誤,是假命題;D、相等的兩個(gè)角不一定是對(duì)頂角,故錯(cuò)誤,是假命題.故選B.【點(diǎn)睛】考查了命題與定理的知識(shí),解題的關(guān)鍵是了解對(duì)頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義,難度不大.12、C【解析】
利用平行四邊形的性質(zhì)得出△ADF∽△EBF,得出=,再根據(jù)勾股定理求出BO的長(zhǎng),進(jìn)而得出答案.【詳解】解:∵在□ABCD中,對(duì)角線(xiàn)AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點(diǎn),∴==,∴BF=2,F(xiàn)D=4.故選C.【點(diǎn)睛】本題考查了勾股定理與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握勾股定理與相似三角形的判定與性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長(zhǎng)均滿(mǎn)足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長(zhǎng)為2、2、2或4、4、4或4、4、2.∴△ABC的周長(zhǎng)為6或12或1.考點(diǎn):一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類(lèi)思想的應(yīng)用.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?4、0.80【解析】
根據(jù)中位數(shù)的定義和平均數(shù)的求法計(jì)算即可,中位數(shù)是將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).【詳解】平均數(shù)=(?2+0?1+2+5)÷5=0.8;把這組數(shù)據(jù)按從大到小的順序排列是:5,2,0,-1,-2,故這組數(shù)據(jù)的中位數(shù)是:0.故答案為0.8;0.【點(diǎn)睛】本題考查了平均數(shù)與中位數(shù)的定義,解題的關(guān)鍵是熟練的掌握平均數(shù)與中位數(shù)的定義.15、300【解析】
設(shè)成本為x元,標(biāo)價(jià)為y元,根據(jù)已知條件可列二元一次方程組即可解出定價(jià).【詳解】設(shè)成本為x元,標(biāo)價(jià)為y元,依題意得,解得故定價(jià)為300元.【點(diǎn)睛】此題主要考查二元一次方程組的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列出方程再求解.16、①②③④【解析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點(diǎn)共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點(diǎn)U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點(diǎn)M是對(duì)角線(xiàn)BD上的點(diǎn),∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點(diǎn)睛:本題考查了正方形的性質(zhì),四點(diǎn)共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線(xiàn)并運(yùn)用有關(guān)知識(shí)理清圖形中西安段間的關(guān)系,證明三角形全等是解決問(wèn)題的關(guān)鍵.17、【解析】
過(guò)點(diǎn)A作AD⊥l1于D,過(guò)點(diǎn)B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對(duì)邊比斜邊列式計(jì)算即可得解.【詳解】如圖,過(guò)點(diǎn)A作AD⊥l1于D,過(guò)點(diǎn)B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線(xiàn)構(gòu)造出全等三角形是解題的關(guān)鍵.18、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點(diǎn):平行線(xiàn)分線(xiàn)段成比例.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、135°【解析】
先證明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,設(shè)∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四邊形的對(duì)角相等得出方程,求出x+y=135°,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,設(shè)∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的性質(zhì).20、(1)證明見(jiàn)解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線(xiàn),證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據(jù)已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據(jù)OG∥BE得出=,即可計(jì)算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點(diǎn),∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線(xiàn);(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據(jù)SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點(diǎn)睛】本題考查了相似三角形與全等三角形的判定與性質(zhì)與切線(xiàn)的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì)與切線(xiàn)的性質(zhì).21、(1)詳見(jiàn)解析;(2)【解析】
(1)根據(jù)正方形的性質(zhì)和等腰直角三角形的性質(zhì)以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質(zhì)和四邊形周長(zhǎng)解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長(zhǎng)AB+BC+OA+OC=.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),難點(diǎn)在于(2)作輔助線(xiàn)構(gòu)造出全等三角形.22、(1)GF=GD,GF⊥GD;(2)見(jiàn)解析;(3)見(jiàn)解析;(4)90°﹣.【解析】
(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線(xiàn)AE的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線(xiàn)AE的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線(xiàn)上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線(xiàn)AE的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,∴直線(xiàn)AE是線(xiàn)段DF的垂直平分線(xiàn),∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于A(yíng)E對(duì)稱(chēng),∴AE是線(xiàn)段DF的垂直平分線(xiàn),∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對(duì)角線(xiàn),∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).23、米.【解析】試題分析:根據(jù)矩形的性質(zhì),得到對(duì)邊相等,設(shè)這條河寬為x米,則根據(jù)特殊角的三角函數(shù)值,可以表示出ED和BF,根據(jù)EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.試題解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四邊形AECF為矩形,∴EC=AF,AE=CF.設(shè)這條河寬為x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴這條河的寬為米.24、3.05米.【解析】
延長(zhǎng)FE交CB的延長(zhǎng)線(xiàn)于M,過(guò)A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】延長(zhǎng)FE交CB的延長(zhǎng)線(xiàn)于M,過(guò)A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.考點(diǎn):解直角三角形的應(yīng)用.25、(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】試題分析:(1)先把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,即可得到m=﹣8,再把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式,即可求出n=1,然后利用待定系數(shù)法確定一次函數(shù)的解析式;(1)先求出直線(xiàn)y=﹣x﹣1與x軸交點(diǎn)C的坐標(biāo),然后利用S△AOB=S△AOC+S△BOC進(jìn)行計(jì)算;(3)觀(guān)察函數(shù)圖象得到當(dāng)x<﹣4或0<x<1時(shí),一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.試題解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函數(shù)解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函數(shù)的解析式為y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,則x=﹣1,即直線(xiàn)y=﹣x﹣1與x軸交于點(diǎn)C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由圖可得,不等式的解集為:x<﹣4或0<x<1.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題;待定系數(shù)法求一次函數(shù)解析式.26、(1)詳見(jiàn)解析;(2)∠BDE=20°.【解析】
(1)根據(jù)已知條件
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行計(jì)算機(jī)培訓(xùn)
- 母嬰護(hù)理培訓(xùn)
- 北京市豐臺(tái)區(qū)2024-2025學(xué)年高二上學(xué)期11月期中考試生物試題
- T-YNZYC 0088-2022 綠色藥材 紅大戟種苗生產(chǎn)技術(shù)規(guī)程
- 運(yùn)動(dòng)治療學(xué)-步行訓(xùn)練
- 【課件】實(shí)際問(wèn)題與一元一次方程(3)球賽積分+課件人教版七年級(jí)數(shù)學(xué)上冊(cè)
- 基于學(xué)習(xí)任務(wù)群的單元教學(xué)設(shè)計(jì)與實(shí)施
- 高中語(yǔ)文第6單元文無(wú)定格貴在鮮活2子路曾誓冉有公西華侍坐課件新人教版選修中國(guó)古代詩(shī)歌散文欣賞
- 信息技術(shù)(第2版)(拓展模塊)教案6-模塊3 3.6 大數(shù)據(jù)安全與風(fēng)險(xiǎn)
- 小學(xué)生安全教育班會(huì)教案12篇 托班安全教案20篇
- 國(guó)開(kāi)作業(yè)《管理學(xué)基礎(chǔ)》管理實(shí)訓(xùn):第一章訪(fǎng)問(wèn)一個(gè)工商企業(yè)或一位管理者-實(shí)訓(xùn)一訪(fǎng)問(wèn)一個(gè)工商企業(yè)或一位管理者-參考(含答案)225
- 無(wú)線(xiàn)電測(cè)向運(yùn)動(dòng)介紹、原理和技術(shù)課件
- 新生兒細(xì)菌及真菌感染的護(hù)理
- 2022小學(xué)新課程標(biāo)準(zhǔn)《道德與法治》
- 教學(xué)用 七年級(jí)勞動(dòng)技術(shù)第一單元花卉及其分類(lèi)第1課時(shí)
- 六年級(jí)上冊(cè)英語(yǔ)課件-Unit5 Signs 第1課時(shí) |譯林版(三起) (共23張PPT)
- 愛(ài)護(hù)公物-珍愛(ài)校園精選課件
- 內(nèi)部審核檢查表(采購(gòu)部)
- 道路貨物運(yùn)輸企業(yè)安全生產(chǎn)檢查表參考模板范本
- 國(guó)有企業(yè)職務(wù)犯罪懲治與預(yù)防
- 初中信息技術(shù)川教八年級(jí)上冊(cè) 我的視頻類(lèi)數(shù)字故事制作視頻類(lèi)數(shù)字故事教案李彥欣
評(píng)論
0/150
提交評(píng)論