



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
本文格式為Word版,下載可任意編輯——證明三角形存在5篇
證明三角形存在5篇
證明三角形存在篇1
平行于三角形一邊的直線和其他兩邊所構成的三角形與原三角形好像;兩邊對應成比例且夾角相等,兩個三角形好像;三邊對應成比例,兩個三角形好像;兩角對應相等,兩個三角形好像。下面我給大家?guī)碜C明兩個三角形好像,夢想能扶助到大家!
證明三角形存在篇2
在三角形中,三個內角的三條角平分線的相交于一點,這個點是這個三角形內切圓的圓心,也叫做三角形的內心。三角形內心到三角形三條邊的距離相等。
三角形的重心,外心,垂心,內心和旁心稱之為三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,內心定理,旁心定理的總稱。
作∠B、∠C的角平分線于AC、AB交于F、D
CD與BF交于I,連接AI交BC并延長至E
由塞瓦定理有:
BF、CD為角平分線
由角平分線定理有:
由角平分線定理的逆定理有AE為∠A的角分線
證明三角形存在篇3
三角分別相等,三邊成比例的兩個三角形叫做好像三角形。好像三角形是幾何中重要的證明模型之一,是全等三角形的推廣。全等三角形可以被理解為好像比為1的好像三角形。好像三角形其實是一套定理的集合,它主要描述了在好像三角形是幾何中兩個三角形中,邊、角的關系。
利用定義判定:平行于三角形一邊的直線和其他兩邊相交,所截得的三角形與原三角形好像;
假設一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形好像;
假設一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角形好像;
假設一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形好像。
證明三角形存在篇4
推論一:頂角或底角相等的兩個等腰三角形好像。
推論二:腰和底對應成比例的兩個等腰三角形好像。
推論三:有一個銳角相等的兩個直角三角形好像。
推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都好像。推論五:假設一個三角形的兩邊和三角形任意一邊上的中線與另一個三角形的對應片面成比例,那么這兩個三角形好像。
好像三角形對應角相等,對應邊成正比例。
好像三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于好像比。
好像三角形周長的比等于好像比。
好像三角形面積的比等于好像比的平方。
好像三角形內切圓、外接圓直徑比和周長比都和好像比一致,內切圓、外接圓面積比是好像比的平方
若a/b=b/c,即b?=ac,b叫做a,c的比例中項7.a/b=c/d等同于ad=bc.8.不必是在同一平面內的三角形里。
證明三角形存在篇5
角平分線的一天性質:角平分線分對邊與該角的兩邊成比例。
在△ABC中,連接BO交AC于E,O是內心,所以BE是∠B的角平分線,而且AD過內心O(均為內心的定義所知),所以在△ADB中BO是∠B的角平分線,
所以有AB/BD=AO/OD,
同理AO/OD=AC/CD
內心:三角形三條角平分線的交點,也是內接圓的圓心。
此題用到的定理的證明
△ABC中,AD是∠A的角平分線,D在BC上,abc是角的對邊ABC,d=AD。由于正弦定理b/sinB=c/sinCd=R1sinB=R2sinC,R1是△ABD的外接圓半
徑,R2是△ACD的外接圓半徑,所以R1/R2=s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州科技職業(yè)技術大學《建筑學》2023-2024學年第二學期期末試卷
- 溫州肯恩大學《中學物理專題訓練與研究》2023-2024學年第二學期期末試卷
- 2025河北省安全員考試題庫及答案
- 德宏職業(yè)學院《新媒體概論》2023-2024學年第二學期期末試卷
- 2024-2025學年湖南省五市十校教研教改共同體高一上學期12月月考歷史試卷
- 山東石油化工學院《工程結構反分析理論》2023-2024學年第二學期期末試卷
- 德宏職業(yè)學院《國際法與當代中國》2023-2024學年第二學期期末試卷
- 廣東茂名農林科技職業(yè)學院《互聯(lián)網+大學生創(chuàng)新創(chuàng)業(yè)設計與實踐》2023-2024學年第二學期期末試卷
- 2025年山西省建筑安全員《A證》考試題庫
- 桂林山水職業(yè)學院《幼兒教師職業(yè)道德與專業(yè)發(fā)展》2023-2024學年第二學期期末試卷
- (課件)-幼兒園中班社會教案《新年里的開心事》
- 2025海南省交通投資控股限公司招聘30人高頻重點提升(共500題)附帶答案詳解
- 宋代美學研究
- 行政管理學知識點全套
- 船舶安全管理培訓課件
- 《工業(yè)機器人現(xiàn)場編程》課件-任務3.涂膠機器人工作站
- 供應鏈管理(第2版)課件:常用的供應鏈管理方法
- 腰椎手術的疑難討論
- 中英文對照版 ASTM B594 2019 鋁合金形變產品超聲波檢測標準慣例
- 五年級下冊道德與法治教學計劃
- 2025屆高考數(shù)學專項復習:阿基米德三角形【六大題型】含答案
評論
0/150
提交評論