2022年湖北恩施白楊重點名校中考沖刺卷數(shù)學試題含解析_第1頁
2022年湖北恩施白楊重點名校中考沖刺卷數(shù)學試題含解析_第2頁
2022年湖北恩施白楊重點名校中考沖刺卷數(shù)學試題含解析_第3頁
2022年湖北恩施白楊重點名校中考沖刺卷數(shù)學試題含解析_第4頁
2022年湖北恩施白楊重點名校中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.142.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁3.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.44.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°5.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=16.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據(jù)題意,可列出二元一次方程組為()A. B. C. D.7.如圖,點從矩形的頂點出發(fā),沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數(shù)關系圖象,則矩形的面積為()A. B. C. D.8.如圖,在中,邊上的高是()A. B. C. D.9.如圖,已知A、B兩點的坐標分別為(-2,0)、(0,1),⊙C的圓心坐標為(0,-1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是A.3 B. C. D.410.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學記數(shù)法表示為_____.12.已知x1、x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,則1213.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.14.方程x-1=的解為:______.15.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.16.如圖,平行線AB、CD被直線EF所截,若∠2=130°,則∠1=_____.三、解答題(共8題,共72分)17.(8分)向陽中學校園內(nèi)有一條林萌道叫“勤學路”,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.18.(8分)清朝數(shù)學家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,每畝場地折實田多少?譯文為:若有山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;若有山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當于實田多少畝?19.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.20.(8分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.21.(8分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.22.(10分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.(1)如圖①,求∠ODE的大?。唬?)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大?。?3.(12分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.24.如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求函數(shù)y=kx+b和y=的表達式;(2)已知點C(0,8),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.2、A【解析】

根據(jù)方差的概念進行解答即可.【詳解】由題意可知甲的方差最小,則應該選擇甲.故答案為A.【點睛】本題考查了方差,解題的關鍵是掌握方差的定義進行解題.3、C【解析】

根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【詳解】解:∵點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運用勾股定理.4、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.5、D【解析】

先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現(xiàn)和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗6、A【解析】

根據(jù)題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據(jù)此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據(jù)實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.7、C【解析】

由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,根據(jù)矩形的面積公式可求出.【詳解】由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【點睛】本題考查動點運動問題、矩形面積等知識,根據(jù)圖形理解△ABP面積變化情況是解題的關鍵,屬于中考常考題型.8、D【解析】

根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關鍵.9、B【解析】試題分析:解:當射線AD與⊙C相切時,△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點:1.切線的性質(zhì);2.三角形的面積.10、B【解析】

根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關鍵,考查學生的推理能力.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學記數(shù)法表示為,故答案為:.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.12、6【解析】

已知x1,x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,根據(jù)方程解的定義及根與系數(shù)的關系可得x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,代入所給的代數(shù)式,再利用完全平方公式變形,整體代入求值即可.【詳解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,∴x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,∴12x1故答案為6.【點睛】本題考查了一元二次方程解的定義及根與系數(shù)的關系,會熟練運用整體思想是解決本題的關鍵.13、50°【解析】

由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數(shù)求出底角的度數(shù),再利用弦切角等于夾弧所對的圓周角,可得出,由的度數(shù)即可求出的度數(shù).【詳解】解:,PB分別為的切線,

,,

又,

則.

故答案為:【點睛】此題考查了切線長定理,切線的性質(zhì),以及等腰三角形的性質(zhì),熟練掌握定理及性質(zhì)是解本題的關鍵.14、【解析】

兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,

解得:x1=0,x2=1,

經(jīng)檢驗,x=0不是原方程的解,x=1是原方程的解

故答案為.【點睛】此題考查無理方程的解法,關鍵是把兩邊平方解答,要注意解答后一定要檢驗.15、【解析】

延長AD和BC交于點E,在直角△ABE中利用三角函數(shù)求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長AD、BC相交于點E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.16、50°【解析】

利用平行線的性質(zhì)推出∠EFC=∠2=130°,再根據(jù)鄰補角的性質(zhì)即可解決問題.【詳解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案為50°【點睛】本題考查平行線的性質(zhì)、鄰補角的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.三、解答題(共8題,共72分)17、燈桿AB的長度為2.3米.【解析】

過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據(jù)此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【點睛】本題主要考查解直角三角形﹣仰角俯角問題,解題的關鍵是結合題意構建直角三角形并熟練掌握三角函數(shù)的定義及其應用能力.18、每畝山田產(chǎn)糧相當于實田0.9畝,每畝場地產(chǎn)糧相當于實田畝.【解析】

設每畝山田產(chǎn)糧相當于實田x畝,每畝場地產(chǎn)糧相當于實田y畝,根據(jù)山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,列二元一次方程組求解.【詳解】解:設每畝山田產(chǎn)糧相當于實田x畝,每畝場地產(chǎn)糧相當于實田y畝.可列方程組為解得答:每畝山田相當于實田0.9畝,每畝場地相當于實田畝.19、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.20、證明見解析.【解析】試題分析:由可得則可證明,因此可得試題解析:即,在和中,考點:三角形全等的判定.21、(2)(2)7或2.【解析】試題分析:(2)根據(jù)反比例函數(shù)k的幾何意義得到|k|=2,可得到滿足條件的k=6,于是得到反比例函數(shù)解析式為y=;(2)分類討論:當以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,再利用反比例函數(shù)圖象上點的坐標特征確定M點坐標為(2,6),則AB=AM=6,所以t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,根據(jù)正方形的性質(zhì)得AB=BC=t-2,則C點坐標為(t,t-2),然后利用反比例函數(shù)圖象上點的坐標特征得到t(t-2)=6,再解方程得到滿足條件的t的值.試題解析:(2)∵△AOM的面積為2,∴|k|=2,而k>0,∴k=6,∴反比例函數(shù)解析式為y=;(2)當以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,把x=2代入y=得y=6,∴M點坐標為(2,6),∴AB=AM=6,∴t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,則AB=BC=t-2,∴C點坐標為(t,t-2),∴t(t-2)=6,整理為t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB為一邊的正方形有一個頂點在反比例函數(shù)y=的圖象上時,t的值為7或2.考點:反比例函數(shù)綜合題.22、(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)連接OE,BD,利用全等三角形的判定和性質(zhì)解答即可;(Ⅱ)利用中位線的判定和定理解答即可.詳解:(Ⅰ)連接OE,BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.∵E點是BC的中點,∴DE=BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位線,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=.點睛:本題考查了圓周角定理,關鍵是根據(jù)學生對全等三角形的判定方法及切線的判定等知識的掌握情況解答.23、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經(jīng)過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論