版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2.2.3向量數(shù)乘運(yùn)算及其幾何意義2.2.3向量數(shù)乘運(yùn)算及其幾何意義1問題提出1.如何求作兩個(gè)非零向量的和向量、差向量?2.相同的幾個(gè)數(shù)相加可以轉(zhuǎn)化為數(shù)乘運(yùn)算,如3+3+3+3+3=5×3=15.那么相等的幾個(gè)向量相加是否也能轉(zhuǎn)化為數(shù)乘運(yùn)算呢?這需要從理論上進(jìn)行探究.abaabba+ba-b問題提出1.如何求作兩個(gè)非零向量的和向量、差向量?2.相同的2探究一:向量的數(shù)乘運(yùn)算及其幾何意義思考1:已知非零向量a,如何求作向量a+a+a和(-a)+(-a)+(-a)?aaOaaABC-a-a-aOMNPa+a+a
(-a)+(-a)+(-a)探究一:向量的數(shù)乘運(yùn)算及其幾何意義思考1:已知非零向量a,如3思考2:向量a+a+a和(-a)+(-a)+(-a)分別如何簡(jiǎn)化其表示形式?
a+a+a記為3a,(-a)+(-a)+(-a)記為-3a.思考3:向量3a和-3a與向量a的大小和方向有什么關(guān)系?aaOaaABC-a-a-aOMNP思考2:向量a+a+a和(-a)+a+a+a記為3a,思4思考4:設(shè)a為非零向量,那么a和a還是向量嗎?它們分別與向量a有什么關(guān)系?aaa思考4:設(shè)a為非零向量,那么a和a還是向量嗎?它們分5思考5:一般地,我們規(guī)定:實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘.記作λa,該向量的長(zhǎng)度與方向與向量a有什么關(guān)系?(1)|λa|=|λ||a|;(2)λ>0時(shí),λa與a方向相同;λ<0時(shí),λa與a方向相反;λ=0時(shí),λa
=0.思考5:一般地,我們規(guī)定:實(shí)數(shù)λ與向量a的積是一個(gè)向量,這6思考6:如圖,設(shè)點(diǎn)M為△ABC的重心,D為BC的中點(diǎn),那么向量與,與分別有什么關(guān)系?ABCDM思考6:如圖,設(shè)點(diǎn)M為△ABC的重心,D為BC的中點(diǎn),那么向7探究二:向量的數(shù)乘運(yùn)算性質(zhì)
思考1:你認(rèn)為-2×(5a),2a+2b,
a可分別轉(zhuǎn)化為什么運(yùn)算?-2×
(5a)=-10a;2a+2b=2(a+b);(3+)a=3a+a.探究二:向量的數(shù)乘運(yùn)算性質(zhì)思考1:你認(rèn)為-2×(5a),28思考2:一般地,設(shè)λ,μ為實(shí)數(shù),則λ(μa),(λ+μ)
a,λ(a+b)分別等于什么?λ(μa)=(λμ)
a;(λ+μ)
a=λa+μa;λ(a+
b)=λa+λb.思考2:一般地,設(shè)λ,μ為實(shí)數(shù),則λ(μa),(λ+μ)a9思考3:對(duì)于向量a(a≠0)和b,若存在實(shí)數(shù)λ,使b=λa,則向量a與b的方向有什么關(guān)系?思考4:若向量a(a≠0)與b共線,則一定存在實(shí)數(shù)λ,使b=λa成立嗎?思考5:綜上可得向量共線定理:向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)λ,使b=λa.若a=0,上述定理成立嗎?思考3:對(duì)于向量a(a≠0)和b,若存在實(shí)數(shù)λ,使b=λa,10思考6:若存在實(shí)數(shù)λ,使,則A、B、C三點(diǎn)的位置關(guān)系如何?思考7:如圖,若P為AB的中點(diǎn),則與、的關(guān)系如何?ABPO思考6:若存在實(shí)數(shù)λ,使,則A、B、C三點(diǎn)11思考8:向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算,對(duì)于任意向量a、b,以及任意實(shí)數(shù)λ、x、y,λ(xa±yb)可轉(zhuǎn)化為什么運(yùn)算?
λ(xa±yb)=λxa±λyb.思考8:向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算,對(duì)于任意12理論遷移例1計(jì)算(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).理論遷移例1計(jì)算132b3babO例2如圖,已知任意兩個(gè)非零向量a,b,試作=a+b,=a+2b,=a+3b.你能判斷A、B、C三點(diǎn)之間的位置關(guān)系嗎?為什么?abABC2b3babO例2如圖,已知任意兩個(gè)非零向量a,b,試作14例3如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)M,且=a,=b,試用a,b表示向量、、、MABDCab例3如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)M,且15小結(jié)作業(yè)1.實(shí)數(shù)與向量可以相乘,其積仍是向量,但實(shí)數(shù)與向量不能相加、相減.實(shí)數(shù)除以向量沒有意義,向量除以非零實(shí)數(shù)就是數(shù)乘向量.2.若λa=0,則可能有λ=0,也可能有a=0.3.向量的數(shù)乘運(yùn)算律,不是規(guī)定,而是可以證明的結(jié)論.向量共線定理是平面幾何中證明三點(diǎn)共線,直線平行,線段數(shù)量關(guān)系的理論依據(jù).小結(jié)作業(yè)1.實(shí)數(shù)與向量可以相乘,其積仍是向量,但實(shí)數(shù)與向量不16作業(yè):P90練習(xí):3,4,5,6.作業(yè):17
85.每一年,我都更加相信生命的浪費(fèi)是在于:我們沒有獻(xiàn)出愛,我們沒有使用力量,我們表現(xiàn)出自私的謹(jǐn)慎,不去冒險(xiǎn),避開痛苦,也失去了快樂。――[約翰·B·塔布]86.微笑,昂首闊步,作深呼吸,嘴里哼著歌兒。倘使你不會(huì)唱歌,吹吹口哨或用鼻子哼一哼也可。如此一來,你想讓自己煩惱都不可能。――[戴爾·卡內(nèi)基]87.當(dāng)一切毫無希望時(shí),我看著切石工人在他的石頭上,敲擊了上百次,而不見任何裂痕出現(xiàn)。但在第一百零一次時(shí),石頭被劈成兩半。我體會(huì)到,并非那一擊,而是前面的敲打使它裂開。――[賈柯·瑞斯]88.每個(gè)意念都是一場(chǎng)祈禱。――[詹姆士·雷德非]89.虛榮心很難說是一種惡行,然而一切惡行都圍繞虛榮心而生,都不過是滿足虛榮心的手段。――[柏格森]90.習(xí)慣正一天天地把我們的生命變成某種定型的化石,我們的心靈正在失去自由,成為平靜而沒有激情的時(shí)間之流的奴隸。――[托爾斯泰]91.要及時(shí)把握夢(mèng)想,因?yàn)閴?mèng)想一死,生命就如一只羽翼受創(chuàng)的小鳥,無法飛翔。――[蘭斯頓·休斯]92.生活的藝術(shù)較像角力的藝術(shù),而較不像跳舞的藝術(shù);最重要的是:站穩(wěn)腳步,為無法預(yù)見的攻擊做準(zhǔn)備。――[瑪科斯·奧雷利阿斯]93.在安詳靜謐的大自然里,確實(shí)還有些使人煩惱.懷疑.感到壓迫的事。請(qǐng)你看看蔚藍(lán)的天空和閃爍的星星吧!你的心將會(huì)平靜下來。[約翰·納森·愛德瓦茲]94.對(duì)一個(gè)適度工作的人而言,快樂來自于工作,有如花朵結(jié)果前擁有彩色的花瓣。――[約翰·拉斯金]95.沒有比時(shí)間更容易浪費(fèi)的,同時(shí)沒有比時(shí)間更珍貴的了,因?yàn)闆]有時(shí)間我們幾乎無法做任何事。――[威廉·班]96.人生真正的歡欣,就是在于你自認(rèn)正在為一個(gè)偉大目標(biāo)運(yùn)用自己;而不是源于獨(dú)自發(fā)光.自私渺小的憂煩軀殼,只知抱怨世界無法帶給你快樂。――[蕭伯納]97.有三個(gè)人是我的朋友愛我的人.恨我的人.以及對(duì)我冷漠的人。愛我的人教我溫柔;恨我的人教我謹(jǐn)慎;對(duì)我冷漠的人教我自立。――[J·E·丁格]98.過去的事已經(jīng)一去不復(fù)返。聰明的人是考慮現(xiàn)在和未來,根本無暇去想過去的事。――[英國哲學(xué)家培根]99.真正的發(fā)現(xiàn)之旅不只是為了尋找全新的景色,也為了擁有全新的眼光。――[馬塞爾·普勞斯特]100.這個(gè)世界總是充滿美好的事物,然而能看到這些美好事物的人,事實(shí)上是少之又少。――[羅丹]101.稱贊不但對(duì)人的感情,而且對(duì)人的理智也發(fā)生巨大的作用,在這種令人愉快的影響之下,我覺得更加聰明了,各種想法,以異常的速度接連涌入我的腦際。――[托爾斯泰]102.人生過程的景觀一直在變化,向前跨進(jìn),就看到與初始不同的景觀,再上前去,又是另一番新的氣候――。[叔本華]103.為何我們?nèi)绱思臣秤诿?,如果一個(gè)人和他的同伴保持不一樣的速度,或許他耳中聽到的是不同的旋律,讓他隨他所聽到的旋律走,無論快慢或遠(yuǎn)近。――[梭羅]104.我們最容易不吝惜的是時(shí)間,而我們應(yīng)該最擔(dān)心的也是時(shí)間;因?yàn)闆]有時(shí)間的話,我們?cè)谑澜缟鲜裁匆膊荒茏?。――[威廉·彭]105.人類的悲劇,就是想延長(zhǎng)自己的壽命。我們往往只憧憬地平線那端的神奇【違禁詞,被屏蔽】,而忘了去欣賞今天窗外正在盛開的玫瑰花。――[戴爾·卡內(nèi)基]106.休息并非無所事事,夏日炎炎時(shí)躺在樹底下的草地,聽著潺潺的水聲,看著飄過的白云,亦非浪費(fèi)時(shí)間。――[約翰·羅伯克]107.沒有人會(huì)只因年齡而衰老,我們是因放棄我們的理想而衰老。年齡會(huì)使皮膚老化,而放棄熱情卻會(huì)使靈魂老化。――[撒母耳·厄爾曼]108.快樂和智能的區(qū)別在于:自認(rèn)最快樂的人實(shí)際上就是最快樂的,但自認(rèn)為最明智的人一般而言卻是最愚蠢的。――[卡雷貝·C·科爾頓]109.每個(gè)人皆有連自己都不清楚的潛在能力。無論是誰,在千鈞一發(fā)之際,往往能輕易解決從前認(rèn)為極不可能解決的事。――[戴爾·卡內(nèi)基]110.每天安靜地坐十五分鐘·傾聽你的氣息,感覺它,感覺你自己,并且試著什么都不想。――[艾瑞克·佛洛姆]111.你知道何謂沮喪---就是你用一輩子工夫,在公司或任何領(lǐng)域里往上攀爬,卻在抵達(dá)最高處的同時(shí),發(fā)現(xiàn)自己爬錯(cuò)了墻頭。--[坎伯]112.「?jìng)ゴ蟆惯@個(gè)名詞未必非出現(xiàn)在規(guī)模很大的事情不可;生活中微小之處,照樣可以偉大。――[布魯克斯]113.人生的目的有二:先是獲得你想要的;然后是享受你所獲得的。只有最明智的人類做到第二點(diǎn)。――[羅根·皮沙爾·史密斯]114.要經(jīng)常聽.時(shí)常想.時(shí)時(shí)學(xué)習(xí),才是真正的生活方式。對(duì)任何事既不抱希望,也不肯學(xué)習(xí)的人,沒有生存的資格。――[阿薩·赫爾帕斯爵士]115.旅行的精神在于其自由,完全能夠隨心所欲地去思考.去感覺.去行動(dòng)的自由。――[威廉·海茲利特]116.昨天是張退票的支票,明天是張信用卡,只有今天才是現(xiàn)金;要善加利用。――[凱·里昂]117.所有的財(cái)富都是建立在健康之上。浪費(fèi)金錢是愚蠢的事,浪費(fèi)健康則是二級(jí)的謀殺罪。――[B·C·福比斯]118.明知不可而為之的干勁可能會(huì)加速走向油盡燈枯的境地,努力挑戰(zhàn)自己的極限固然是令人激奮的經(jīng)驗(yàn),但適度的休息絕不可少,否則遲早會(huì)崩潰。――[邁可·漢默]119.進(jìn)步不是一條筆直的過程,而是螺旋形的路徑,時(shí)而前進(jìn),時(shí)而折回,停滯后又前進(jìn),有失有得,有付出也有收獲。――[奧古斯汀]120.無論那個(gè)時(shí)代,能量之所以能夠帶來奇跡,主要源于一股活力,而活力的核心元素乃是意志。無論何處,活力皆是所謂“人格力量”的原動(dòng)力,也是讓一切偉大行動(dòng)得以持續(xù)的力量。――[史邁爾斯]121.有兩種人是沒有什么價(jià)值可言的:一種人無法做被吩咐去做的事,另一種人只能做被吩咐去做的事。――[C·H·K·寇蒂斯]122.對(duì)于不會(huì)利用機(jī)會(huì)的人而言,機(jī)會(huì)就像波浪般奔向茫茫的大海,或是成為不會(huì)孵化的蛋。――[喬治桑]123.未來不是固定在那里等你趨近的,而是要靠你創(chuàng)造。未來的路不會(huì)靜待被發(fā)現(xiàn),而是需要開拓,開路的過程,便同時(shí)改變了你和未來。――[約翰·夏爾]124.一個(gè)人的年紀(jì)就像他的鞋子的大小那樣不重要。如果他對(duì)生活的興趣不受到傷害,如果他很慈悲,如果時(shí)間使他成熟而沒有了偏見。――[道格拉斯·米爾多]125.大凡宇宙萬物,都存在著正、反兩面,所以要養(yǎng)成由后面.里面,甚至是由相反的一面,來觀看事物的態(tài)度――。[老子]126.在寒冷中顫抖過的人倍覺太陽的溫暖,經(jīng)歷過各種人生煩惱的人,才懂得生命的珍貴。――[懷特曼]127.一般的偉人總是讓身邊的人感到渺?。坏嬲膫ト藚s能讓身邊的人認(rèn)為自己很偉大。――[G.K.Chesteron]128.醫(yī)生知道的事如此的少,他們的收費(fèi)卻是如此的高。――[馬克吐溫]129.問題不在于:一個(gè)人能夠輕蔑、藐視或批評(píng)什么,而是在于:他能夠喜愛、看重以及欣賞什么。――[約翰·魯斯金]向量數(shù)乘運(yùn)算及其幾何意義優(yōu)秀課件182.2.3向量數(shù)乘運(yùn)算及其幾何意義2.2.3向量數(shù)乘運(yùn)算及其幾何意義19問題提出1.如何求作兩個(gè)非零向量的和向量、差向量?2.相同的幾個(gè)數(shù)相加可以轉(zhuǎn)化為數(shù)乘運(yùn)算,如3+3+3+3+3=5×3=15.那么相等的幾個(gè)向量相加是否也能轉(zhuǎn)化為數(shù)乘運(yùn)算呢?這需要從理論上進(jìn)行探究.abaabba+ba-b問題提出1.如何求作兩個(gè)非零向量的和向量、差向量?2.相同的20探究一:向量的數(shù)乘運(yùn)算及其幾何意義思考1:已知非零向量a,如何求作向量a+a+a和(-a)+(-a)+(-a)?aaOaaABC-a-a-aOMNPa+a+a
(-a)+(-a)+(-a)探究一:向量的數(shù)乘運(yùn)算及其幾何意義思考1:已知非零向量a,如21思考2:向量a+a+a和(-a)+(-a)+(-a)分別如何簡(jiǎn)化其表示形式?
a+a+a記為3a,(-a)+(-a)+(-a)記為-3a.思考3:向量3a和-3a與向量a的大小和方向有什么關(guān)系?aaOaaABC-a-a-aOMNP思考2:向量a+a+a和(-a)+a+a+a記為3a,思22思考4:設(shè)a為非零向量,那么a和a還是向量嗎?它們分別與向量a有什么關(guān)系?aaa思考4:設(shè)a為非零向量,那么a和a還是向量嗎?它們分23思考5:一般地,我們規(guī)定:實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘.記作λa,該向量的長(zhǎng)度與方向與向量a有什么關(guān)系?(1)|λa|=|λ||a|;(2)λ>0時(shí),λa與a方向相同;λ<0時(shí),λa與a方向相反;λ=0時(shí),λa
=0.思考5:一般地,我們規(guī)定:實(shí)數(shù)λ與向量a的積是一個(gè)向量,這24思考6:如圖,設(shè)點(diǎn)M為△ABC的重心,D為BC的中點(diǎn),那么向量與,與分別有什么關(guān)系?ABCDM思考6:如圖,設(shè)點(diǎn)M為△ABC的重心,D為BC的中點(diǎn),那么向25探究二:向量的數(shù)乘運(yùn)算性質(zhì)
思考1:你認(rèn)為-2×(5a),2a+2b,
a可分別轉(zhuǎn)化為什么運(yùn)算?-2×
(5a)=-10a;2a+2b=2(a+b);(3+)a=3a+a.探究二:向量的數(shù)乘運(yùn)算性質(zhì)思考1:你認(rèn)為-2×(5a),226思考2:一般地,設(shè)λ,μ為實(shí)數(shù),則λ(μa),(λ+μ)
a,λ(a+b)分別等于什么?λ(μa)=(λμ)
a;(λ+μ)
a=λa+μa;λ(a+
b)=λa+λb.思考2:一般地,設(shè)λ,μ為實(shí)數(shù),則λ(μa),(λ+μ)a27思考3:對(duì)于向量a(a≠0)和b,若存在實(shí)數(shù)λ,使b=λa,則向量a與b的方向有什么關(guān)系?思考4:若向量a(a≠0)與b共線,則一定存在實(shí)數(shù)λ,使b=λa成立嗎?思考5:綜上可得向量共線定理:向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)λ,使b=λa.若a=0,上述定理成立嗎?思考3:對(duì)于向量a(a≠0)和b,若存在實(shí)數(shù)λ,使b=λa,28思考6:若存在實(shí)數(shù)λ,使,則A、B、C三點(diǎn)的位置關(guān)系如何?思考7:如圖,若P為AB的中點(diǎn),則與、的關(guān)系如何?ABPO思考6:若存在實(shí)數(shù)λ,使,則A、B、C三點(diǎn)29思考8:向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算,對(duì)于任意向量a、b,以及任意實(shí)數(shù)λ、x、y,λ(xa±yb)可轉(zhuǎn)化為什么運(yùn)算?
λ(xa±yb)=λxa±λyb.思考8:向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算,對(duì)于任意30理論遷移例1計(jì)算(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).理論遷移例1計(jì)算312b3babO例2如圖,已知任意兩個(gè)非零向量a,b,試作=a+b,=a+2b,=a+3b.你能判斷A、B、C三點(diǎn)之間的位置關(guān)系嗎?為什么?abABC2b3babO例2如圖,已知任意兩個(gè)非零向量a,b,試作32例3如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)M,且=a,=b,試用a,b表示向量、、、MABDCab例3如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)M,且33小結(jié)作業(yè)1.實(shí)數(shù)與向量可以相乘,其積仍是向量,但實(shí)數(shù)與向量不能相加、相減.實(shí)數(shù)除以向量沒有意義,向量除以非零實(shí)數(shù)就是數(shù)乘向量.2.若λa=0,則可能有λ=0,也可能有a=0.3.向量的數(shù)乘運(yùn)算律,不是規(guī)定,而是可以證明的結(jié)論.向量共線定理是平面幾何中證明三點(diǎn)共線,直線平行,線段數(shù)量關(guān)系的理論依據(jù).小結(jié)作業(yè)1.實(shí)數(shù)與向量可以相乘,其積仍是向量,但實(shí)數(shù)與向量不34作業(yè):P90練習(xí):3,4,5,6.作業(yè):35
85.每一年,我都更加相信生命的浪費(fèi)是在于:我們沒有獻(xiàn)出愛,我們沒有使用力量,我們表現(xiàn)出自私的謹(jǐn)慎,不去冒險(xiǎn),避開痛苦,也失去了快樂。――[約翰·B·塔布]86.微笑,昂首闊步,作深呼吸,嘴里哼著歌兒。倘使你不會(huì)唱歌,吹吹口哨或用鼻子哼一哼也可。如此一來,你想讓自己煩惱都不可能。――[戴爾·卡內(nèi)基]87.當(dāng)一切毫無希望時(shí),我看著切石工人在他的石頭上,敲擊了上百次,而不見任何裂痕出現(xiàn)。但在第一百零一次時(shí),石頭被劈成兩半。我體會(huì)到,并非那一擊,而是前面的敲打使它裂開。――[賈柯·瑞斯]88.每個(gè)意念都是一場(chǎng)祈禱。――[詹姆士·雷德非]89.虛榮心很難說是一種惡行,然而一切惡行都圍繞虛榮心而生,都不過是滿足虛榮心的手段。――[柏格森]90.習(xí)慣正一天天地把我們的生命變成某種定型的化石,我們的心靈正在失去自由,成為平靜而沒有激情的時(shí)間之流的奴隸。――[托爾斯泰]91.要及時(shí)把握夢(mèng)想,因?yàn)閴?mèng)想一死,生命就如一只羽翼受創(chuàng)的小鳥,無法飛翔。――[蘭斯頓·休斯]92.生活的藝術(shù)較像角力的藝術(shù),而較不像跳舞的藝術(shù);最重要的是:站穩(wěn)腳步,為無法預(yù)見的攻擊做準(zhǔn)備。――[瑪科斯·奧雷利阿斯]93.在安詳靜謐的大自然里,確實(shí)還有些使人煩惱.懷疑.感到壓迫的事。請(qǐng)你看看蔚藍(lán)的天空和閃爍的星星吧!你的心將會(huì)平靜下來。[約翰·納森·愛德瓦茲]94.對(duì)一個(gè)適度工作的人而言,快樂來自于工作,有如花朵結(jié)果前擁有彩色的花瓣。――[約翰·拉斯金]95.沒有比時(shí)間更容易浪費(fèi)的,同時(shí)沒有比時(shí)間更珍貴的了,因?yàn)闆]有時(shí)間我們幾乎無法做任何事。――[威廉·班]96.人生真正的歡欣,就是在于你自認(rèn)正在為一個(gè)偉大目標(biāo)運(yùn)用自己;而不是源于獨(dú)自發(fā)光.自私渺小的憂煩軀殼,只知抱怨世界無法帶給你快樂。――[蕭伯納]97.有三個(gè)人是我的朋友愛我的人.恨我的人.以及對(duì)我冷漠的人。愛我的人教我溫柔;恨我的人教我謹(jǐn)慎;對(duì)我冷漠的人教我自立。――[J·E·丁格]98.過去的事已經(jīng)一去不復(fù)返。聰明的人是考慮現(xiàn)在和未來,根本無暇去想過去的事。――[英國哲學(xué)家培根]99.真正的發(fā)現(xiàn)之旅不只是為了尋找全新的景色,也為了擁有全新的眼光。――[馬塞爾·普勞斯特]100.這個(gè)世界總是充滿美好的事物,然而能看到這些美好事物的人,事實(shí)上是少之又少。――[羅丹]101.稱贊不但對(duì)人的感情,而且對(duì)人的理智也發(fā)生巨大的作用,在這種令人愉快的影響之下,我覺得更加聰明了,各種想法,以異常的速度接連涌入我的腦際。――[托爾斯泰]102.人生過程的景觀一直在變化,向前跨進(jìn),就看到與初始不同的景觀,再上前去,又是另一番新的氣候――。[叔本華]103.為何我們?nèi)绱思臣秤诿绻粋€(gè)人和他的同伴保持不一樣的速度,或許他耳中聽到的是不同的旋律,讓他隨他所聽到的旋律走,無論快慢或遠(yuǎn)近。――[梭羅]104.我們最容易不吝惜的是時(shí)間,而我們應(yīng)該最擔(dān)心的也是時(shí)間;因?yàn)闆]有時(shí)間的話,我們?cè)谑澜缟鲜裁匆膊荒茏觥(D―[威廉·彭]105.人類的悲劇,就是想延長(zhǎng)自己的壽命。我們往往只憧憬地平線那端的神奇【違禁詞,被屏蔽】,而忘了去欣賞今天窗外正在盛開的玫瑰花。――[戴爾·卡內(nèi)基]106.休息并非無所事事,夏日炎炎時(shí)躺在樹底下的草地,聽著潺潺的水聲,看著飄過的白云,亦非浪費(fèi)時(shí)間。――[約翰·羅伯克]107.沒有人會(huì)只因年齡而衰老,我們是因放棄我們的理想而衰老。年齡會(huì)使皮膚老化,而放棄熱情卻會(huì)使靈魂老化。――[撒母耳·厄爾曼]108.快樂和智能的區(qū)別在于:自認(rèn)最快樂的人實(shí)際上就是最快樂的,但自認(rèn)為最明智的人一般而言卻是最愚蠢的。――[卡雷貝·C·科爾頓]109.每個(gè)人皆有連自己都不清楚的潛在能力。無論是誰,在千鈞一發(fā)之際,往往能輕易解決從前認(rèn)為極不可能解決的事。――[戴爾·卡內(nèi)基]110.每天安靜地坐十五分鐘·傾聽你的氣息,感覺它,感覺你自己,并且試著什么都不想。――[艾瑞克·佛洛姆]111.你知道何謂沮喪---就是你用一輩子工夫,在公司或任何領(lǐng)域里往上攀爬,卻在抵達(dá)最高處的同時(shí),發(fā)現(xiàn)自己爬錯(cuò)了墻頭。--[坎伯]112.「?jìng)ゴ蟆惯@個(gè)名詞未必非出現(xiàn)在規(guī)模很大的事情不可;生活中微小之處,照樣可以偉大。――[布魯克斯]113.人生的目的有二:先是獲得你想要的;然后是享受你所獲得的。只有最明智的人類做到第二點(diǎn)。――[羅根·皮沙爾·史密斯]114.要經(jīng)常聽.時(shí)常想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度彩鋼房倉儲(chǔ)物流服務(wù)合同3篇
- 2025年汽車駕駛員健康體檢聘用合同
- 2025年度航空航天零部件采購合同年度協(xié)議3篇
- 個(gè)人商鋪?zhàn)赓U合同2024年版版
- 2025年度地下車庫車位使用權(quán)轉(zhuǎn)讓及配套設(shè)施安裝合同4篇
- 二零二五版露天游樂場(chǎng)地租賃合同示范文本4篇
- 二零二五版房屋租賃合同終止及租賃雙方權(quán)益保障及違約責(zé)任協(xié)議3篇
- 2025年度農(nóng)業(yè)科技陳列館設(shè)計(jì)及施工合同7篇
- 2025年二手商品交易合同
- 二零二五年度出國打工人員勞動(dòng)權(quán)益保障及法律援助合同3篇
- 2025年安慶港華燃?xì)庀薰菊衅腹ぷ魅藛T14人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 人教版(2025新版)七年級(jí)下冊(cè)數(shù)學(xué)第七章 相交線與平行線 單元測(cè)試卷(含答案)
- GB/T 44351-2024退化林修復(fù)技術(shù)規(guī)程
- 完整2024年開工第一課課件
- 從跨文化交際的角度解析中西方酒文化(合集5篇)xiexiebang.com
- 中藥飲片培訓(xùn)課件
- 醫(yī)院護(hù)理培訓(xùn)課件:《早產(chǎn)兒姿勢(shì)管理與擺位》
- 《論文的寫作技巧》課件
- 空氣自動(dòng)站儀器運(yùn)營(yíng)維護(hù)項(xiàng)目操作說明以及簡(jiǎn)單故障處理
- 2022年12月Python-一級(jí)等級(jí)考試真題(附答案-解析)
- T-CHSA 020-2023 上頜骨缺損手術(shù)功能修復(fù)重建的專家共識(shí)
評(píng)論
0/150
提交評(píng)論