分布式計(jì)算機(jī)并行處理技術(shù)英文文獻(xiàn)_第1頁
分布式計(jì)算機(jī)并行處理技術(shù)英文文獻(xiàn)_第2頁
分布式計(jì)算機(jī)并行處理技術(shù)英文文獻(xiàn)_第3頁
分布式計(jì)算機(jī)并行處理技術(shù)英文文獻(xiàn)_第4頁
分布式計(jì)算機(jī)并行處理技術(shù)英文文獻(xiàn)_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

AMODERNCOURSEONPARALLELANDDISTRIBUTEDPROCESSINGLubomirIvanovDepartmentofComputerScienceIonaCollege715NorthAvenueNewRochelleNY10801tel.:914-633-2342ABSTRACTTherapidadvancesinboththedevelopmentandtheuseofparallelcomputingsystemshasledtotheneedforhighlytrainedprofessionalswithaknowledgeofboththehardwareandthesoftwareaspectsofparallelanddistributedcomputing.Wepresentacourseaimedatpreparingstudentsforthedemandsoftheworkplacebygivingthemhands-onexperienceworkingwithparallelcomputersandsoftwareAdditionallythiscourseemphasizestheessentialconnectionsbetweenComputerScienceandotherdisciplinessuchasBiologyBiochemistryPhysicsandAstronomywheretheuseofparallelcomputingiscommonplace.IINTRODUCTIONParallelcomputingwhichformanyyearswasconsideredapurelyacademicendeavorisgraduallybecominganecessityofmodernmainstreamcomputingTherearemanyreasonsforthis:ThecurrentlevelofmicroprocessortechnologyseemstobefinallyreachingthelimitoftheclockspeedatwhichCPUscanbeoperatedwithreasonablecoolingClassicalparallelcomputingtechniquessuchasSIMDhavebeenreintroducedinthecontextofgeneral-purposemicroprocessorsOntheotherhandtherapidadvancesinBiologyChemistryPhysicsandAstronomyhavedramaticallyincreasedtheneedforever-morepowerfulcomputationalplatformsformodelingandsimulatingcomplexrealworldphenomenaandprocessesImmergingnewfieldssuchasBiocomputinghavespannedtheboundariesbetweenComputerScienceandotherdisciplinesdemandinggreaterbreadthanddepthofknowledgeandskillsfromthepractitionersTheseskillsincludeanin-depthunderstandingofparallelcomputingbothfromahardwareandsoftwarepointofviewandcanonlybeacquiredthroughextensivehands-onexperienceworkingonparallelsystemsandprojects.TopreparesuchhighlytrainedprofessionalscapableofdesigningimplementingandoperatingparallelsystemsatthesoftwareandhardwarelevelComputerScienceprogramsmustincludeawidercoverageofparallelcomputingintheircurriculaTraditionallycoursesonparallelcomputingaretaughtaselectivestoseniorsorgraduatestudentsAtypicalcourseonparallelcomputingusuallyincludesahistoricaloverviewofthemajorarchitecturalapproachesandhistoricallysignificantmachinescoupledwithabriefintroductiontovariousparallelprogrammingparadigmsInthecontextofmodernparallelarchitecturesandparallelprogrammingneedssuchatreatmentofthesubjectisinsufficientWhilelearningabouttheILLIACIVandtheCrayYMPmaybeinterestingfromthepointofviewofstudyingthediversityofdesigndecisionsemployedintheseearlyarchitecturesitdoeslittletopreparestudentsforthedemandsofmodernparallelprocessingInthispaperweoutlinethestructureandcontentsofaupper-levelundergraduatecourseonParallelandDistributedComputingwhichplacestheemphasisprimarilyonmoderntechniquesforparallelandthreadprogrammingbackedupbyasufficientexposuretomodernparallelarchitecturesandtheoryThecoursecentersaroundseveralrelativelylarge-scaleprojectsbasedonproblemsofcurrentinteresttothescientificcommunityTheseprojectsaretobeimplementedbystudentsusinglanguagesthatsupportthreads(e.gJavaandparallelprogramminglibrariessuchastheMessagePassingInterface(MPIInadditiontodevelopingparallelalgorithmicthinkingandprogrammingskillsstudentslearntoestimatetheexpectedperformanceoftheirsoftwarebyanalyzingtherunningtimeoftheiralgorithmsasafunctionofthenumberandtypeofprocessesphysicalCPUsandthecommunicationcapabilityoftheinterconnectionnetworkStudentsbecomefamiliarwithanumberofkeymodernparallelarchitecturesstudycertainaspectsofdistributedoperatingsystemsdevelopmentandunderstandtheissuesofmappingvirtualprocessestotheunderlyingphysicalhardwareofthemachineinordertomaximizeperformance.Intheremainderofthispaper,weoutlinetheneedforparallelanddistributedcomputingdiscussabasicclassificationofparallelarchitecturesandsoftwareconsidersomemoderntrendsinparallelcomputingandpresentthespecificsofourParallelandDistributedComputingcourse.IITHENEEDFORAPARALLELANDDISTRIBUTEDCOMPUTINGCOURSEThecurrentlevelofmicroprocessorimplementationtechnologyhasreachedsub-100nmrangeTheever-increasingcircuitcomplexitypackedintoanever-smallerspaceinvariablyleadstoproblemssuchasquantummechanicaleffectsandheatthatatthecurrentleveloftechnologyaredifficultorimpossibletoovercomeWhilecompaniesareactivelyresearchingalternateimplementationtechnologiesandmaterials(e.g“quantumwell”transistorsbasedonInSb[1]thecurrentmicroprocessorimplementationtechnologyseemstohavereachedthepeakclockspeedatwhichconventionalcoolingcanstillbeemployedInfactthatispreciselythereasonwhythelatestIntelPentium-Dchipsrunatalower(upto3.4GHzclockspeedcomparedtotheirpredecessors(max3.8GHzTheydohoweverofferdualcoretechnologywhichwhenproperlyusedbythesoftwarepromisestosignificantlyimproveperformanceOthertraditionalparallelprocessingconceptshavefoundtheirwayintotheinstructionsetsofmodernCPUssuchastheMMXandSSE(StreamingSIMDExtensionsintheIntelandAMDprocessors’instructionssetsNon-traditionalhighlyparallelarchitecturessuchasNeuralNetworksandCellularAutomatahavehelpeddealwithproblemsforwhichalgorithmsareeitherdifficultorimpossibletodesignAtthesoftwarelevelthreads-theabilitytosplitaprocessintoindependentandconcurrenttasks–havebeenwidelyacceptedandthreadsupporthasbeenincorporatedintomostpowerfulprogramminglanguagessuchasC++andJavaThemajorityofmoderngeneral-purposeaswellasembeddedapplicationsaremultithreadedwhichcontributesgreatlytotheirefficiencyOntheotherhandparallelprocessinglibrariessuchasPVM(ParallelVirtualMachineandMPI(MessagePassingInterfacehavebecomethebackbonefordevelopinghighlycomplexapplicationsfordealingwithavarietyofcomputationallydemandingproblemsfromAstronomyPhysicsChemistryBiologyandEconomicsTherecentadvancesinBio-ChemistryDNA-analysisatmosphericresearchetcaredueprimarilytotheavailabilityofhigh-performanceparallelarchitecturesandsupportingsoftwareIngeneralwithtraditionalmicroprocessortechnologyfacingfundamentallimitationsandwithnovelcomputingapproaches(quantumcomputingetc.stillverymuchinanearlyresearchphaseparallelprocessingofferstheonlyrealopportunityforcontinuedincreaseoftheperformanceofcomputingsystemsThecomputerindustrybothsoftwareandhardware-hasembracedparallelprocessinganditisnolongerconsideredapurelyacademicendeavorIronicallyitisintheacademiccirclesthatparallelcomputingisstillregardedwithskepticismMostengineering-typeuniversitiesofferseniorlevelelectivesonParallelProcessingwhichmoreoftenthannotprovideabroadhistoricaloverviewofthefieldwithoutemphasisonthemodernaspectsofparallelprocessingSomesuchcoursestakethe“hardware”approachtoparallelcomputingandtracetheevolutionofparallelarchitecturesfromitsoriginsinthe1960’sthroughtherecentpastbyexamininganumberofmachinesrepresentingtypicalarchitecturalapproachese.gtheILLIACIVastherepresentativeofSIMDmachinestheCRAYYPMasatypicalvectorprocessorarchitecturetheCRAYT3Dasaclassicshared-memoryMIMDdesignetcSmallsnippetsofcodeareusedtoillustratespecificissuesinprogrammingthemachinesinquestionOtherParallelProcessingcoursesignorethearchitecturalaspectsofparallelprocessingcompletelyandconcentrateinsteadonexploringanumberofdifferentprogrammingparadigmsAtmostliberal-artscollegescoursesonParallelProcessingareusuallynotofferedTheonlyaspectsofparallelcomputingthatstudentsareexposedtoarepipeliningandsuperscalarprocessorswhicharebrieflycoveredinmostComputerOrganizationandArchitecturecoursesTheconceptofathreadisusuallymentionedintheOperatingSystemscoursebutfewcoursesofferstudentshands-onexperienceworkingwiththreadsIIIPARALLELANDDISTRIBUTEDCOMPUTINGInthispaperwetakealookatthecurrentstateofparallelanddistributedcomputingandoutlineacoursewhichstrivestostrikeabalanceamongthetheoreticalhardwareandsoftwareaspectsofmodernparallelanddistributedcomputingWebelievethatitisimpossibletocoverinasinglecoursethemultitudeofarchitecturalandsoftwareapproachesaswellastheextensivetheorythathasbeendevelopedoverthepastfewdecadesThuswesacrificesomeofthebreadthofthesubjectforamoredetailedtreatmentofspecificareaswhichareessentialinpresent-dayparallelcomputing.1TheCurrentStateofParallelandDistributedComputingBeforeweconsiderthecontentsofthecourseweneedtotakeabrieflookatthestateofmodernparallelanddistributedcomputingModernparallelarchitecturescanbelooselyclassifiedasdata-parallelorcode-parallelDataparallelarchitecturesarethosewhichapplythesameoperationtomultiplestreamsofdataconcurrentlyThetwomaincategoriesofdata-parallelmachinesarevectorandSIMD(SingleInstruction/MultipleDataStreamarchitecturesInadditionsomemicroprocessorssuchastheIntelPentiumandtheAMDAthlonprovidethesocalledStreamingSIMDExtensions(SSEoftheirrespectiveinstructionsetswhichallowsimultaneousoperationonseveralintegersorfloatingpointnumbersSomenon-traditionalmodelsofcomputationsuchasArtificialNeuralNetworksandCellularAutomataalsobelongtothisclassThecode-parallelarchitecturesarethosewhichexecutecodeinparallelDependingonthegrainofparallelismthesearchitecturesfallintothefollowinggroups:Instruction-levelparallelarchitectures:theseexecutemultipleinstructionsconcurrentlyand/orinanoverlappedfashionThisclassincludesthepipelinedsuperscalarandVLIWarchitectures.Thread/Process-levelparallelarchitectures:theseexecutemultipleprocesses/threadsconcurrentlyandincludetheso-calleddistributed-andshared-memoryMIMD(MultipleInstruction/MultipleDataStreammachines.MostmodernarchitecturesoftenspantheboundariesofthesecategoriesandoffercombinationsofapproachestoparallelismForexampletheIntelPentiumprocessorsareessentiallyinstruction-levelparallelarchitecturesthatemploybothpipeliningandsuperscalarprocessingbutalsoallowstreamingSIMDoperationsforspecificmultimediatypesofdataaswellasdual-corecapabilitywhichallowsatrulyparallelthreadexecutiontobescheduledbytheoperatingsystemInrecentyearsanumberofsignificanthardwareandsoftwaretrendshaveemergedandestablishedthemselvesasthepredominantwaytoemployparallelanddistributedprocessing:Clustercomputing:Thisapproachbelongstothethread/process-levelparallelarchitecturecategory(usuallydistributedmemoryMIMDOriginallyknownas“poorman’ssupercomputing”theideaistousearelativelylargecollectionofinexpensiveoff-the-shelfmicroprocessorssuchasIntelPentiumsorDECAlphasandinterconnectthemusingregularEthernetTheperformancegainisnotassignificantaswithatruesupercomputerwhichusesspecializedprocessorsandoptimizedinterconnectionnetworksandroutingalgorithmsbutthecostofaclusterismanytimeslowerthanthatofatypicalsupercomputerInrecentyearsclustercomputinghasbecomethepredominantwayofimplementinghigh-performancesystemsMostcomputermanufacturerssuchasDellHPIBMandIntelnowofferrelativelyinexpensiveclustersranginginpricefrom$20,000toabout$100,000Takentoahigherleveltheideaofclustercomputinghasbecomethebasisforthedesignandimplementationofmanyoftoday’smostpowerfulmachinessuchasBlueGene/L[2]ASCPurple[3]andASCIRed[4]TheMessagePassingInterface(MP[5]:Messagepassingisapowerfulmethodforprocesses/threadstoexchangedatawhencollaboratingonsolvingalargeproblemMPIisalibraryspecificationformessagepassingwhichhasestablisheditselfasthede-factostandardintheparallelprocessing(inparticularMIMDcommunitypushingasidealltheoldermessagepassingmethodssuchasPVMTheMPIspecificationhasbeenimplementedintoCC++andFortranlibrariesJavaisnotdirectlysupportedbuttherecentlydevelopedmpiJava[6]interfaceprovidestheabilitytointerfaceJavaprogramstothestandardMPITheuseofMPIallowsthecreationofextremelycomplexandpowerfulparallelprogramsMPIisuniversallyusedwhenwritinglarge-scalecomputingsimulationsofbiologicalprocessessuchasprotein-foldingorastrophysicalprocessessuchasN-bodyinteractionsOtherapplicationsthatrelyheavilyontheuseofMPIareweather-predictionsoftwarefluid-dynamicalcomputationpackagesandevenseismicresearchtools.Threads:Theabilitytosplitaprocessintoanumberoflightweightindependentandconcurrentsub-processes-threads-hasrevolutionizedsoftwaredevelopment-onallplatformsDevelopingmultithreadedapplicationsrequiresanewsetofskillsandanewtypeofalgorithmicthinkingOntheonehandthreadsoffertheprogrammerstheconvenienceofconcentratingonimplementingaparticulartaskwithoutworryingabouthowtointegrateitinthelargercontextofanapplication-iftwotasksneedtobeperformedconcurrentlytheneachisdesignedasaseparatethreadandstartedindependentlyoftheotherOntheotherhandthreadprogrammingisnotwithoutitsownsetofchallengesThreadsoftenrequiresynchronization:MultiplethreadsmustnotbeallowedtosimultaneouslyupdateanobjectAlternatelyonethreadmaycomputearesultneededbyanotherthreadandtheinteractionbetweenthetwomustbecarefullyorchestratedReal-timeapplicationsofthreadsinembeddedsystemsraiseanumberofadditionalchallengessuchastimingconstraintsdeadlockavoidanceandgeneralsoftwarequalitycontroltonameafewNewstandardsandlanguagesubsetssuchastheJava2:MicroEditionarespecificallydesignedtoservetheneedforthreadprocessinginembeddedsystems.High-PerformanceFortran:Whilecode-parallelarchitecturesrelyprimarilyonthreadprocessingandmessagepassingdata-parallelarchitecturesrequireadifferentsetofstandardsandlanguageswhichincludeconvenientprimitivesfordistributingdata(vectorsmatricesetc.amongprocessorssothatitcanbemanipulatedinparallelTheHighPerformanceFortranForum[7]hasdevelopedanumberofextensionsofFortran90knowncollectivelyasHighPerformanceFortran(HPFtohelpprogrammerswritedata-parallelprogramsSomecomplexfluid-dynamicandastrophysicalsimulationshavebeenimplementedusingHPFbutconsideringtheoverallpredominanceofMIMDarchitecturesandmessagepassinginmodernsupercomputingthesignificanceofHPFissomewhatreducedInviewofthesetrendsourParallelandDistributedComputingcourseconcentratesonclustercomputingthreadprocessingandmessagepassingWeaimtogiveourstudentsafundamentalunderstandingofthebasicconceptsandchallengesintheseareasandprovidehands-onexperiencebyengagingthestudentsinprojectsthatusetheaforementionedlanguageslibrariesandtechniques2.TheParallelandDistributedComputingCourseThecourseincorporatesalecture-alab-andaprojectcomponentThelecturescoverthebasictheoryofparallelcomputingaswellasdetailsofspecificarchitecturesdesigndecisionsandtradeoffssoftwareparadigmsetcThelabsallowstudentstogainhands-onexperiencewiththematerialpresentedduringlecturesbyapplyingitinthecontextofsmallcase-studiesandprogrammingassignmentsThecoursealsoincludesseverallargerprojectswhichstudentshavetocompleteindependentlyoringroups2.1TheLectureComponentThefirstfewlecturesconcentrateonperformanceissues:estimatingexecutiontimespeedupofaparallelprogramcomparedtoaserialimplementationusingAmdalh’slawforparallelprocessingexploringtheparallelcomplexityclassesstudyingtheeffectsofcommunicationandIOontheperformanceofaparallelprogrametcTheideaistogivestudentsthetoolsforevaluatingprogramperformanceasearlyaspossibleandtogetthemusedtoconsideringfactorssuchasthenumberofprocessorstheIObottlenecketcwhendecidinghowtobestparallelizetheirprogramsNextFlynn’staxonomyisintroducedandthemaincategoriesofparallelanddistributedarchitecturesarediscussedHeretheemphasisismostlyonunderstandingtheconceptualdifferencesamongthevarioustypesofarchitecturesAtthispointthenotionsofvectorprocessingandmessagepassingareintroducedandillustratedwithafewsimpleHPFandMPIprogramswhoseexecutionistracedindetailTheroleofthecompilerandtheoperatingsysteminhandlingparallelismisalsodiscussedThisleadnaturallytothediscussionofthreadsThreadsaredefinedasindividualsequentialcontrolflowswithinanexecutingprogramUser-levelvskernellevelthreadsarestudiedandtheadvantagesanddisadvantagesofeacharediscussedfromthepointofviewofcontextswitchingoverheadcooperativemultitaskingissuesetcThreadsynchronizationisstudiedinthecontextoftheclassicalproducer-consumerproblem:AhandshakingprotocolfordataexchangebetweenaproducerandaconsumerprocessandpossibleproblemsthatmayariseareexaminedindetailandillustratedwithspecificcodeexamplesOtherissuessuchaspreventingsimultaneouswriteaccesstoasharedresourceandthreaddeadlockavoidanceareconsideredTheusesofthreadsinweb-basedapplicationsaswellasinvariousembeddedsystemsarestudiedNextthediscussioncentersonclustercomputingThearchitecturesandinterconnectionnetworkpatternsofatypicalclusterareconsideredandvariousdesigndecisionspotentialproblemsandbottlenecksarediscussedAspecificMPIprogramisusedtodemonstratetheextentoftheeffectofIOandinter-processcommunicationonthespeedofprogramexecutionThisontheonehandrelatesthetheoreticalmaterialdiscussedinthebeginningofthecoursetoaverypracticalreal-worldexampleandatthesametimeleadstoadiscussionofoptimalnetworkstructuresforparallelprocessingSomerealclusterarchitecturesareexaminedaswellThediscussionofclustercomputingintroducesstudentstotheMessagePassingInterface(MPIAbriefcomparisonwiththeParallelVirtualMachine(PVMlibraryismadeandthenthevariousaspectsofMPIareintroducedinthecontextofspecificscientificproblemsInparticulartheclassicalN-bodyproblemispresentedandvarioussolutionsareconsideredandcomparedbasedontheefficiencyoftheirparallelimplementationIftimepermitstheinstructormaychoosetopresentothertopicsofcurrentscientificinterestsuchastheprotein-foldingprobleminbiochemistryanddiscussstrategiesfordesigningparallelsimulationalgorithms-fromamathematicalspecificationtoaparallelimplementationanddebugging.Thelastpartofthecoursedealswithnon-traditionalmassively-parallelmodelsofcomputationArtificialNeuralNetworksarecomparedandcontrastedwithCellularAutomataDependingontheavailabletimeanumberofdifferentNeuralNetworkmodelscanbediscussedsuchasPerceptronsBackpropagationNetworksHopfieldNetworksetcAgeneraltheoreticaldiscussionofCellularAutomatacanleadtoaprojectonimplementingConway’sGame-of-Life2-dimensionalCellularAutomaton2.2TheLabComponentThelabcomponentissynchronizedwiththelecturematerialbutconcentratesmoreonhands-onactivitiesandassignmentsThefirstlabgivesstudentsanopportunitytoevaluatetheperformanceofseveralsimpleparallelprogramsThenextfewlabsconcentrateonthreadsandofferstudentsasetofincreasinglymorechallengingassignmentsimplementingsynchronizingpausingandrestartingthreadsetcInadditiontolearningaboutthreadsthestudents’knowledgeofJavaandtheSwingAPIisreinforcedasthecomplexityofthelaterassignmentsbecomessignificantandknowledgeacquiredinpreviousprogrammingcoursesbecomesessentialFromjustbeforethemiddleofthesemesterstudentsareformallyintroducedtoMPIVariousaspectsofMPI-point-to-pointvsbroadcastmessaginggroupingdataforcommunicationderivedtypesadvancedIOandfileIOissues-arecoveredinsuccessivelabsbyrequiringstudentstocompleteduringthecourseofthelabportionsofinstructor-preparedMPIprogramsortowritecompleteprogramsindependentlyLabassignmentswhichcannotbecompletedduringtheallocatedlabperiodareexpectedbythenextlabperiod2.3TheProjectsTheprojectsareanessentialpartoftheParallelandDistributedComputingcourseTheynotonlyprovidestudentswithadditionalhands-onexperiencebeyondthatacquiredinthelabbutallowthemtoseethe“bigpicture”-theapplicationparallelcomputingtolarge-scalecomputationallyintensiveproblemsforwhichsequentialsolutionsaretootime-consumingAdditionallytheconnectionstootherareasofresearchsuchasBiologyChemistryandPhysicsareemphasizedandtheroleofComputerScienceintheoverallcontextofScienceishighlightedTypicallythreetofourprojectsaregivenduringthecourseThefirstprojectisamultithreadedimplementationofthehandshakingcommunicationprotocoldiscussedearlierTheprotocolspecifiesasetofrulesfordataexchangebetweenasenderandareceiverthroughasharedbufferThebuffercapacitymaybeasinglebyteoracircularqueueInthecaseofasingle-bytedatabufferthestatusofthebufferisgivenbyadataflag:0forbufferempty1forbufferfullInthecaseofthebufferimplementedasacircularqueueashared“count”variableisusedtomonitortheactualnumberofitemsinthebufferThesenderandthereceiverareimplementedasseparatethreadsandtheirpropersynchronizationisemphasizedThesecondprojectisanMPIimplementationofhost/guestalgorithmforsolvingtheN-bodyproblemfromPhysicsAstronomyandBiochemistryTheN-bodyproblemdescribestheinteractionofasetofNobjects(planetsparticlesatomsormoleculesetc.throughtheforcestheyexertoneachotherThesumoftheseforcesactsoneachoftheobjectsbychangingtheobject’saccelerationandthereforeitsspatialpositionrelativetootherobjectsAsaresultofthatchangethestrengthoftheinteractionforcesischangedetcSolvingtheN-bodyproblemforlargecollectionsofobjectsisanextremelycomputationally-intensivetaskandmanydifferentalgorithmshavebeendesignedtodealwiththeproblemThehost/guestalgorithmisarelativelysimple(butnotparticularlyefficientalgorithmwhichisdiscussedduringlectureandassignedtostudentsasaMPI-basedprojectThethirdprojectisanMPI-basedimplementationofConway’sGame-of-Life2DCellularAutomatonThisprojectisparticularlyfunforstudentsandmanyofthemchoosetoimplementagraphicalinterfacewhichallowsthemtodisplaytheevolutionoftheCAcoloniesunderiteration3.Course-RelatedChallengesandObstaclesInthecontextofthepresent-dayneedforparallelanddistributedcomputingtheParallelandDistributedComputingcourseisvitalt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論