高三數(shù)學(xué)必備知識(shí)點(diǎn)歸納_第1頁(yè)
高三數(shù)學(xué)必備知識(shí)點(diǎn)歸納_第2頁(yè)
高三數(shù)學(xué)必備知識(shí)點(diǎn)歸納_第3頁(yè)
高三數(shù)學(xué)必備知識(shí)點(diǎn)歸納_第4頁(yè)
高三數(shù)學(xué)必備知識(shí)點(diǎn)歸納_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

本文格式為Word版,下載可任意編輯——高三數(shù)學(xué)必備知識(shí)點(diǎn)歸納高三學(xué)生很快就會(huì)面臨持續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮領(lǐng)會(huì)了?這對(duì)于沒(méi)有社會(huì)(閱歷)的學(xué)生來(lái)說(shuō),無(wú)疑是個(gè)困難的想選擇。下面是我給大家?guī)?lái)的(高三數(shù)學(xué))必備學(xué)識(shí)點(diǎn)歸納,以供大家參考!

高三數(shù)學(xué)必備學(xué)識(shí)點(diǎn)歸納

一、排列

1定義

(1)從n個(gè)不同元素中取出m個(gè)元素,按照確定的依次排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一排列。

(2)從n個(gè)不同元素中取出m個(gè)元素的全體排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),記為Amn.

2排列數(shù)的公式與性質(zhì)

(1)排列數(shù)的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:當(dāng)m=n時(shí),Amn=n!=n(n-1)(n-2)…×3×2×1

規(guī)定:0!=1

二、組合

1定義

(1)從n個(gè)不同元素中取出m個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合

(2)從n個(gè)不同元素中取出m個(gè)元素的全體組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),用符號(hào)Cmn表示。

2對(duì)比與鑒別

由排列與組合的定義知,獲得一個(gè)排列需要“取出元素”和“對(duì)取出元素按確定依次排成一列”兩個(gè)過(guò)程,而獲得一個(gè)組合只需要“取出元素”,不管怎樣的依次并成一組這一個(gè)步驟。

排列與組合的識(shí)別在于組合僅與選取的元素有關(guān),而排列不僅與選取的元素有關(guān),而且還與取出元素的依次有關(guān)。因此,所給問(wèn)題是否與取出元素的依次有關(guān),是判斷這一問(wèn)題是排列問(wèn)題還是組合問(wèn)題的理論依據(jù)。

三、排列組合與二項(xiàng)式定理學(xué)識(shí)點(diǎn)

1.計(jì)數(shù)原理學(xué)識(shí)點(diǎn)

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類(lèi))

2.排列(有序)與組合(無(wú)序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原那么:先選后排,先分再排

排列組合題的主要解題(方法):優(yōu)先法:以元素為主,應(yīng)先得志特殊元素的要求,再考慮其他元素.以位置為主考慮,即先得志特殊位置的要求,再考慮其他位置.

捆綁法(集團(tuán)元素法,把某些務(wù)必在一起的元素視為一個(gè)整體考慮)

插空法(解決相間問(wèn)題)間接法和去雜法等等

在求解排列與組合應(yīng)用問(wèn)題時(shí),應(yīng)留神:

(1)把概括問(wèn)題轉(zhuǎn)化或歸結(jié)為排列或組合問(wèn)題;

(2)通過(guò)分析確定運(yùn)用分類(lèi)計(jì)數(shù)原理還是分步計(jì)數(shù)原理;

(3)分析題目條件,制止“選取”時(shí)重復(fù)和遺漏;

(4)列出式子計(jì)算和作答.

經(jīng)常運(yùn)用的數(shù)學(xué)思想是:

①分類(lèi)議論思想;②轉(zhuǎn)化思想;③對(duì)稱(chēng)思想.

4.二項(xiàng)式定理學(xué)識(shí)點(diǎn):

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

更加地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質(zhì)和主要結(jié)論:對(duì)稱(chēng)性Cnm=Cnn-m

二項(xiàng)式系數(shù)在中間。(要留神n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

全體二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。

5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問(wèn)題,運(yùn)用二項(xiàng)開(kāi)展式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

6.留神二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的識(shí)別,在求某幾項(xiàng)的系數(shù)的和時(shí)留神賦值法的應(yīng)用。

高三數(shù)學(xué)重要學(xué)識(shí)點(diǎn)摘要

1、函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),那么f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為繁雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

(5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有一致的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2、復(fù)合函數(shù)的有關(guān)問(wèn)題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題確定要留神定義域優(yōu)先的原那么。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3、函數(shù)圖像(或方程曲線的對(duì)稱(chēng)性)

(1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;

(2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,那么y=f(x)圖像關(guān)于直線x=a對(duì)稱(chēng);

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱(chēng);

4、函數(shù)的周期性

(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,那么y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),那么f(x)是周期為2|a|的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),那么f(x)是周期為4|a|的周期函數(shù);

(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),那么f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱(chēng),那么函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,那么y=f(x)是周期為2的周期函數(shù);

5、方程k=f(x)有解k∈D(D為f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a0a≠1,b0,n∈R+);

(2)logaN=(a0,a≠1,b0,b≠1);

(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

(4)alogaN=N(a0,a≠1,N0);

8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

(1)A中元素務(wù)必都有象且;

(2)B中元素不確定都有原象,并且A中不同元素在B中可以有一致的象;

9、能純熟地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

10、對(duì)于反函數(shù),應(yīng)掌管以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個(gè)函數(shù)具有一致的單調(diào)性;

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,那么有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11、處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;

12、依據(jù)單調(diào)性

利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題;

13、恒成立問(wèn)題的處理方法

(1)分開(kāi)參數(shù)法;

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

a(1)=a,a(n)為公差為r的等差數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)+r=a(n-2)+2r=、、、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

可用歸納法證明。

n=1時(shí),a(1)=a+(1-1)r=a。成立。

假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r

那么,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

通項(xiàng)公式也成立。

因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+(a+r)+、、、+[a+(n-1)r]

=na+r[1+2+、、、+(n-1)]

=na+n(n-1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)r=a(n-2)r^2=、、、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

可用歸納法證明等比數(shù)列的通項(xiàng)公式。

求和公式:

S(n)=a(1)+a(2)+、、、+a(n)

=a+ar+、、、+ar^(n-1)

=a[1+r+、、、+r^(n-1)]

r不等于1時(shí),

S(n)=a[1-r^n]/[1-r]

r=1時(shí),

S(n)=na、

同樣,可用歸納法證明求和公式。

高三數(shù)學(xué)根基學(xué)識(shí)點(diǎn)(總結(jié))最新

考點(diǎn)一:集合與簡(jiǎn)易規(guī)律

集合片面一般以選擇題展現(xiàn),屬輕易題。重點(diǎn)測(cè)驗(yàn)集合間關(guān)系的理解和熟悉。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)才能的測(cè)驗(yàn),并向無(wú)限集進(jìn)展,測(cè)驗(yàn)(抽象思維)才能。在解決這些問(wèn)題時(shí),要留神利用幾何的直觀性,并提防集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易規(guī)律測(cè)驗(yàn)有兩種形式:一是在選擇題和填空題中直接測(cè)驗(yàn)命題及其關(guān)系、規(guī)律聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q(chēng)命題和特稱(chēng)命題的否決等,二是在解答題中深層次測(cè)驗(yàn)常用規(guī)律用語(yǔ)表達(dá)數(shù)學(xué)解題過(guò)程和規(guī)律推理。

考點(diǎn)二:函數(shù)與導(dǎo)數(shù)

函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性測(cè)驗(yàn)函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、根本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起測(cè)驗(yàn)函數(shù)的性質(zhì)。導(dǎo)數(shù)片面一方面測(cè)驗(yàn)導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面測(cè)驗(yàn)導(dǎo)數(shù)的簡(jiǎn)樸應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式展現(xiàn),屬于輕易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式展現(xiàn),如一些不等式恒成立問(wèn)題、參數(shù)的取值范圍問(wèn)題、方程根的個(gè)數(shù)問(wèn)題、不等式的證明等問(wèn)題。

考點(diǎn)三:三角函數(shù)與平面向量

一般是2道小題,1道綜合解答題。小題一道測(cè)驗(yàn)平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角學(xué)識(shí)點(diǎn)的補(bǔ)充。大題中假設(shè)沒(méi)有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是測(cè)驗(yàn)平面向量為主的試題,要留神數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)測(cè)驗(yàn)平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問(wèn)題是“新(熱點(diǎn))”題型、

考點(diǎn)四:數(shù)列與不等式

不等式主要測(cè)驗(yàn)一元二次不等式的解法、一元二次不等式組和簡(jiǎn)樸線性規(guī)劃問(wèn)題、根本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中舉行測(cè)驗(yàn)、在選擇、填空題中測(cè)驗(yàn)等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的生動(dòng)應(yīng)用,一道解答題大多凸顯以數(shù)列學(xué)識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問(wèn)題的才能,它們都屬于中、高檔題目、

考點(diǎn)五:立體幾何與空間向量

一是測(cè)驗(yàn)空間幾何體的布局特征、直觀圖與三視圖;二是測(cè)驗(yàn)空間點(diǎn)、線、面之間的位置關(guān)系;三是測(cè)驗(yàn)利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。

考點(diǎn)六:解析幾何

一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要測(cè)驗(yàn)直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題那么主要測(cè)驗(yàn)直線與橢圓、拋物線等的位置關(guān)系

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論