高二數(shù)學測試練習的知識點歸納_第1頁
高二數(shù)學測試練習的知識點歸納_第2頁
高二數(shù)學測試練習的知識點歸納_第3頁
高二數(shù)學測試練習的知識點歸納_第4頁
高二數(shù)學測試練習的知識點歸納_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——高二數(shù)學測試練習的知識點歸納要掌管正確的(學習(方法))。磨練自己學數(shù)學的才能,轉(zhuǎn)變學習方式,要變更單純采納的學習方式,要學會采用采納學習與探究學習、合作學習、體驗學習等多樣化的方式舉行學習。下面是我給大家?guī)淼模ǜ叨?shù)學)測試練習的學識點歸納,夢想大家能夠熱愛!

高二數(shù)學測試練習的學識點歸納1

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),那么f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為繁雜,應(yīng)先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有一致的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題確定要留神定義域優(yōu)先的原那么。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,那么y=f(x)圖像關(guān)于直線x=a對稱;

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

4.函數(shù)的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,那么y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,那么f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,那么f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,那么f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,那么函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,那么y=f(x)是周期為2的周期函數(shù);

5.方程k=f(x)有解k∈D(D為f(x)的值域);

高二數(shù)學測試練習的學識點歸納2

1.計數(shù)原理學識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原那么:先選后排,先分再排

排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先得志特殊元素的要求,再考慮其他元素.以位置為主考慮,即先得志特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些務(wù)必在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應(yīng)用問題時,應(yīng)留神:

(1)把概括問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;

(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;

(3)分析題目條件,制止“選取”時重復(fù)和遺漏;

(4)列出式子計算和作答.

經(jīng)常運用的數(shù)學思想是:

①分類議論思想;②轉(zhuǎn)化思想;③對稱思想.

4.二項式定理學識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

更加地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m

二項式系數(shù)在中間。(要留神n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)

全體二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。

5.二項式定理的應(yīng)用:解決有關(guān)近似計算、整除問題,運用二項開展式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

6.留神二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結(jié)果的系數(shù))的識別,在求某幾項的系數(shù)的和時留神賦值法的應(yīng)用。

高二數(shù)學測試練習的學識點歸納3

1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,那么將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),持續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,那么這時的除數(shù)就是原來兩個數(shù)的公約數(shù).

3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其根本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)對比,并以大數(shù)減小數(shù),持續(xù)這個操作,直到所得的數(shù)相等為止,那么這個數(shù)就是所求的公約數(shù).

4.秦九韶算法是一種用于計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們?yōu)榱擞嫈?shù)和運算便當而商定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.

7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)矩計算出結(jié)果.

8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應(yīng)的進制數(shù).

1.重點:理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會求兩個數(shù)的公約數(shù);理解秦九韶算法原理,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論