2022-2023學年山東省青島西海岸新區(qū)第七中學數(shù)學九年級第一學期期末達標檢測試題含解析_第1頁
2022-2023學年山東省青島西海岸新區(qū)第七中學數(shù)學九年級第一學期期末達標檢測試題含解析_第2頁
2022-2023學年山東省青島西海岸新區(qū)第七中學數(shù)學九年級第一學期期末達標檢測試題含解析_第3頁
2022-2023學年山東省青島西海岸新區(qū)第七中學數(shù)學九年級第一學期期末達標檢測試題含解析_第4頁
2022-2023學年山東省青島西海岸新區(qū)第七中學數(shù)學九年級第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖所示的幾何體,它的俯視圖是()A. B.C. D.2.如圖所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,則∠BOF為()A.35° B.30° C.25° D.20°3.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.34.下列事件中,隨機事件是()A.任意畫一個三角形,其內(nèi)角和為180° B.經(jīng)過有交通信號的路口,遇到紅燈C.在只裝了紅球的袋子中摸到白球 D.太陽從東方升起5.圓錐的底面半徑為2,母線長為6,它的側(cè)面積為()A. B. C. D.6.如圖,四邊形ABCD的兩條對角線互相垂直,AC+BD=16,則四邊形ABCD的面積最大值是()A.64 B.16 C.24 D.327.下列各點在反比例函數(shù)圖象上的是()A. B. C. D.8.如圖,OA交⊙O于點B,AD切⊙O于點D,點C在⊙O上.若∠A=40°,則∠C為()A.20° B.25° C.30° D.35°9.如圖,是的直徑,、是?。ó愑?、)上兩點,是弧上一動點,的角平分線交于點,的平分線交于點.當點從點運動到點時,則、兩點的運動路徑長的比是()A. B. C. D.10.如圖所示幾何體的左視圖正確的是()A. B. C. D.二、填空題(每小題3分,共24分)11.在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是(結(jié)果保留π).12.公元前4世紀,古希臘數(shù)學家歐多克索斯第一個系統(tǒng)研究了有關(guān)黃金矩形的問題.并建立起比例理論,他認為所謂黃金分割,指的是把長為L的線段分為兩部分,使其中較長部分對于全部之比,等于較短部分對于較長部分之比.所謂黃金矩形指的就是矩形的寬與長的比適合這一比例.則在黃金矩形中寬與長的比值是______.13.如圖,拋物線向右平移個單位得到拋物線___________.14.某小區(qū)2010年屋頂綠化面積為2000平方米,計劃2012年屋頂綠化面積要達到2880平方米.如果每年屋頂綠化面積的增長率相同,那么這個增長率是_________.15.一只昆蟲在如圖所示的樹枝上尋覓食物,假定昆蟲在每個岔路口都會隨機選擇一條路徑,則它獲取食物的概率是.16.如圖,點在雙曲線()上,過點作軸,垂足為點,分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點,作直線交軸于點,交軸于點,連接.若,則的值為______.17.如圖,在由邊長為1的小正方形組成的網(wǎng)格中.點A,B,C,D都在這些小正方形的格點上,AB、CD相交于點E,則sin∠AEC的值為_____.18.如圖,直線y=x﹣2與x軸、y軸分別交于點A和點B,點C在直線AB上,且點C的縱坐標為﹣1,點D在反比例函數(shù)y=的圖象上,CD平行于y軸,S△OCD=,則k的值為________.三、解答題(共66分)19.(10分)如圖,點E在的中線BD上,.(1)求證:;(2)求證:.20.(6分)定義:如果一個四邊形的一組對角互余,那么我們稱這個四邊形為“對角互余四邊形”.(1)如圖①,在對角互余四邊形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,則四邊形ABCD的面積為;(2)如圖②,在對角互余四邊形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四邊形ABCD的面積;(3)如圖③,在△ABC中,BC=2AB,∠ABC=60°,以AC為邊在△ABC異側(cè)作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面積.21.(6分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,點C在OP上,滿足∠CBP=∠ADB.(1)求證:BC是⊙O的切線;(2)若OA=2,AB=1,求線段BP的長.22.(8分)已知銳角△ABC內(nèi)接于⊙O,OD⊥BC于點D.(1)若∠BAC=60°,⊙O的半徑為4,求BC的長;(2)請用無刻度直尺畫出△ABC的角平分線AM.(不寫作法,保留作圖痕跡)23.(8分)如圖,在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).(1)求證:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周長.24.(8分)如圖①,A(﹣5,0),OA=OC,點B、C關(guān)于原點對稱,點B(a,a+1)(a>0).(1)求B、C坐標;(2)求證:BA⊥AC;(3)如圖②,將點C繞原點O順時針旋轉(zhuǎn)α度(0°<α<180°),得到點D,連接DC,問:∠BDC的角平分線DE,是否過一定點?若是,請求出該點的坐標;若不是,請說明理由.25.(10分)如圖,拋物線與軸交于,兩點.(1)求該拋物線的解析式;(2)若拋物線交軸于點,在該拋物線的對稱軸上是否存在點,使得的周長最???若存在,求出點的坐標;若不存在,請說明理由26.(10分)某商場以每件280元的價格購進一批商品,當每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當降價的方式促銷,經(jīng)調(diào)查發(fā)現(xiàn),如果每件商品降價1元,那么商場每月就可以多售出5件.(1)降價前商場每月銷售該商品的利潤是多少元?(2)要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應(yīng)降價多少元?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)俯視圖的確定方法,找到從上面看所得到的圖形即是所求圖形.【詳解】從幾何體上面看,有三列,第一列2個,第二列1個位于第2層,第三列1個位于第2層.故選:D.【點睛】本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.2、C【解析】試題分析:CD∥AB,∠D=50°則∠BOD=50°.則∠DOA=180°-50°=130°.則OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.選C.考點:平行線性質(zhì)點評:本題難度較低,主要考查學生對平行線性質(zhì)及角平分線性質(zhì)的掌握.3、D【分析】找到最簡公分母,去分母后得到關(guān)于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當x=1時,x2﹣4≠0,所以x=1是原方程的解;當x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.【點睛】本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產(chǎn)生.4、B【分析】由題意根據(jù)隨機事件就是可能發(fā)生也可能不發(fā)生的事件這一定義,依次對選項進行判斷.【詳解】解:A、任意畫一個三角形,其內(nèi)角和為180°,是必然事件,不符合題意;B、經(jīng)過有交通信號的路口遇到紅燈,是隨機事件,符合題意;C、在只裝了紅球的袋子中摸到白球,是不可能事件,不符合題意;D、太陽從東方升起,是必然事件,不符合題意;故選:B.【點睛】本題主要考查必然事件、不可能事件、隨機事件的概念,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關(guān)鍵.5、B【分析】根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.【詳解】根據(jù)圓錐的側(cè)面積公式:rl=×2×6=12,故選:B.【點睛】本題主要考查了圓錐側(cè)面積公式.熟練地應(yīng)用圓錐側(cè)面積公式求出是解決問題的關(guān)鍵.6、D【解析】設(shè)AC=x,四邊形ABCD面積為S,則BD=16-x,

則:S=AC?BD=x(16-x)=-(x-8)2+32,

當x=8時,S最大=32;

所以AC=BD=8時,四邊形ABCD的面積最大,

故選D.【點睛】二次函數(shù)最值以及四邊形面積求法,正確掌握對角線互相垂直的四邊形面積求法是解題關(guān)鍵.7、B【分析】將每個選項中點的橫坐標代入反比例函數(shù)解析式中,看函數(shù)值是否一致,如果一致,說明點在函數(shù)圖象上,反之則不在.【詳解】A選項中,當時,故該選項錯誤;B選項中,當時,,故該選項正確;C選項中,當時,,故該選項錯誤;D選項中,當時,,故該選項錯誤.故選B【點睛】本題主要考查點是否在反比例函數(shù)圖象上,掌握反比例函數(shù)變量的求法是解題的關(guān)鍵.8、B【分析】根據(jù)切線的性質(zhì)得到∠ODA=90°,根據(jù)直角三角形的性質(zhì)求出∠DOA,根據(jù)圓周角定理計算即可.【詳解】解:∵切于點∴∴∵∴∴故選:B【點睛】本題考查了切線的性質(zhì):圓心與切點的連線垂直切線、圓周角定理以及直角三角形兩銳角互余的性質(zhì),結(jié)合圖形認真推導即可得解.9、A【解析】連接BE,由題意可得點E是△ABC的內(nèi)心,由此可得∠AEB=135°,為定值,確定出點E的運動軌跡是是弓形AB上的圓弧,此圓弧所在圓的圓心在AB的中垂線上,根據(jù)題意過圓心O作直徑CD,則CD⊥AB,在CD的延長線上,作DF=DA,則可判定A、E、B、F四點共圓,繼而得出DE=DA=DF,點D為弓形AB所在圓的圓心,設(shè)⊙O的半徑為R,求出點C的運動路徑長為,DA=R,進而求出點E的運動路徑為弧AEB,弧長為,即可求得答案.【詳解】連結(jié)BE,∵點E是∠ACB與∠CAB的交點,∴點E是△ABC的內(nèi)心,∴BE平分∠ABC,∵AB為直徑,∴∠ACB=90°,∴∠AEB=180°-(∠CAB+∠CBA)=135°,為定值,,∴點E的軌跡是弓形AB上的圓弧,∴此圓弧的圓心一定在弦AB的中垂線上,∵,∴AD=BD,如下圖,過圓心O作直徑CD,則CD⊥AB,∠BDO=∠ADO=45°,在CD的延長線上,作DF=DA,則∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四點共圓,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴點D為弓形AB所在圓的圓心,設(shè)⊙O的半徑為R,則點C的運動路徑長為:,DA=R,點E的運動路徑為弧AEB,弧長為:,C、E兩點的運動路徑長比為:,故選A.【點睛】本題考查了點的運動路徑,涉及了三角形的內(nèi)心,圓周角定理,四點共圓,弧長公式等,綜合性較強,正確分析出點E運動的路徑是解題的關(guān)鍵.10、A【分析】左視圖是從物體的左面看得到的視圖,找到從左面看所得到的圖形即可.【詳解】該幾何體的左視圖為:是一個矩形,且矩形中有兩條橫向的虛線.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖二、填空題(每小題3分,共24分)11、.【解析】試題分析:將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉(zhuǎn)的弧,根據(jù)弧長公式即可求得.試題解析:∵AB=4,∴BC=2,所以弧長=.考點:1.弧長的計算;2.旋轉(zhuǎn)的性質(zhì).12、【分析】根據(jù)黃金矩形指的就是矩形的寬與長的比適合黃金分割比例,所以求出黃金分割比例即可,設(shè)線段長為1,較長的部分為x,則較短的部分為1-x,根據(jù)較長部分對于全部之比,等于較短部分對于較長部分之比,求出x,即可得到比值.【詳解】解:設(shè)線段長為1,較長的部分為x,則較短的部分為1-x∴∴x1=,x2=(舍)∴黃金分割比例為:∴黃金矩形中寬與長的比值:故答案為:.【點睛】本題主要考查了黃金分割比例,讀懂題意并且列出比例式正確求解是解決本題的關(guān)鍵.13、【分析】先確定拋物線的頂點坐標為(0,2),再利用點平移的規(guī)律得到點(0,2)平移后所得對應(yīng)點的坐標為(1,2),然后根據(jù)頂點式可得平移后的拋物線的解析式.【詳解】解:拋物線的頂點坐標為(0,2),把點(0,2)向右平移1個單位所得對應(yīng)點的坐標為(1,2),∴平移后的拋物線的解析式是:;故答案為.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.14、20%【解析】分析:本題需先設(shè)出這個增長率是x,再根據(jù)已知條件找出等量關(guān)系列出方程,求出x的值,即可得出答案.解答:解:設(shè)這個增長率是x,根據(jù)題意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案為20%.15、.【詳解】解:根據(jù)樹狀圖,螞蟻獲取食物的概率是=.故答案為.考點:列表法與樹狀圖法.16、【分析】設(shè)OA交CF于K.利用面積法求出OA的長,再利用相似三角形的性質(zhì)求出AB、OB即可解決問題;【詳解】解:如圖,設(shè)OA交CF于K.由作圖可知,CF垂直平分線段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案為:.【點睛】本題考查了尺規(guī)作圖-作線段的垂直平分線,線段垂直平分線的性質(zhì),反比例函數(shù)圖象上的點的坐標特征,勾股定理,相似三角形的判定與性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.17、【分析】通過作垂線構(gòu)造直角三角形,由網(wǎng)格的特點可得Rt△ABD是等腰直角三角形,進而可得Rt△ACF是等腰直角三角形,求出CF,再根據(jù)△ACE∽△BDE的相似比為1:3,根據(jù)勾股定理求出CD的長,從而求出CE,最后根據(jù)銳角三角函數(shù)的意義求出結(jié)果即可.【詳解】過點C作CF⊥AE,垂足為F,在Rt△ACD中,CD=,由網(wǎng)格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC?sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案為:.【點睛】考查銳角三角函數(shù)的意義、直角三角形的邊角關(guān)系,作垂線構(gòu)造直角三角形是解決問題常用的方法,借助網(wǎng)格,利用網(wǎng)格中隱含的邊角關(guān)系是解決問題的關(guān)鍵.18、1【詳解】試題分析:把x=2代入y=x﹣2求出C的縱坐標,得出OM=2,CM=1,根據(jù)CD∥y軸得出D的橫坐標是2,根據(jù)三角形的面積求出CD的值,求出MD,得出D的縱坐標,把D的坐標代入反比例函數(shù)的解析式求出k即可.解:∵點C在直線AB上,即在直線y=x﹣2上,C的橫坐標是2,∴代入得:y=×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y軸,S△OCD=,∴CD×OM=,∴CD=,∴MD=﹣1=,即D的坐標是(2,),∵D在雙曲線y=上,∴代入得:k=2×=1.故答案為1.考點:反比例函數(shù)與一次函數(shù)的交點問題.點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次函數(shù)、反比例函數(shù)的圖象上點的坐標特征、三角形的面積等知識點,通過做此題培養(yǎng)了學生的計算能力和理解能力,題目具有一定的代表性,是一道比較好的題目.三、解答題(共66分)19、(1)見解析;(2)見解析【分析】(1)由∠DAE=∠ABD,∠ADE=∠BDA,根據(jù)有兩角對應(yīng)相等的三角形相似,可得△ADE∽△BDA;(2)由點E在中線BD上,可得,又由∠CDE=∠BDC,根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得△CDE∽△BDC,繼而證得∠DEC=∠ACB.【詳解】解:證明:(1)∵∠DAE=∠ABD,∠ADE=∠BDA,

∴△ADE∽△BDA;(2)∵D是AC邊上的中點,

∴AD=DC,∵△ADE∽△BDA∴,∴,又∵∠CDE=∠BDC,

∴△CDE∽△BDC,

∴∠DEC=∠ACB.【點睛】此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.20、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三邊的特殊關(guān)系以及勾股定理,就可以解決問題;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.這樣可以求∠DCE=90°,則可以得到DE的長,進而把四邊形ABCD的面積轉(zhuǎn)化為△BCD和△BCE的面積之和,△BDE和△CDE的面積容易算出來,則四邊形ABCD面積可求;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,則BE=CE=BC,證出△ABE是等邊三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,證出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,設(shè)AB=x,則AC=x,由直角三角形的性質(zhì)得出CF=3,從而DF=3,設(shè)CG=a,AF=y,證明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,進而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面積即可得出答案.【詳解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵對角互余四邊形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=?AC?BC=××1=,S△ACD═?AC?AD=××3=,∴S四邊形ABCD=S△ABC+S△ACD=2,故答案為:2;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,如圖②所示:則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四邊形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根據(jù)勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=?BH?DE=×12×10=60,S△CED=?CD?CE=×6×8=24,∵△BCE≌△BAD,∴S四邊形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,如圖③所示:則BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,設(shè)AB=x,則AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,設(shè)CG=a,AF=y(tǒng),在四邊形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合題意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面積=AD×CF=××3=.【點睛】此題是四邊形綜合題,主要考查了新定義的理解和應(yīng)用,相似三角形的判定和性質(zhì),勾股定理,等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì),含30°角的直角三角形的性質(zhì)等知識;本題綜合性強,有一定難度.21、(1)見解析;(2)BP=1.【分析】(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)等腰三角形的性質(zhì)和已知條件證出∠OBC=90°,即可得出結(jié)論;(2)證明△AOP∽△ABD,然后利用相似三角形的對應(yīng)邊成比例求BP的長.【詳解】(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切線;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=1.【點睛】本題考查了切線的判定、圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)等知識;熟練掌握圓周角定理和切線的判定是解題的關(guān)鍵.22、(1);(2)見解析【分析】(1)連接OB、OC,得到,然后根據(jù)垂徑定理即可求解BC的長;(2)延長OD交圓于E點,連接AE,根據(jù)垂徑定理得到,即,AE即為所求.【詳解】(1)連接OB、OC,∴∵OD⊥BC∴BD=CD,且∵OB=4∴0D=2,BD=∴BC=故答案為;(2)如圖所示,延長OD交⊙O于點E,連接AE交BC于點M,AM即為所求根據(jù)垂徑定理得到,即,所以AE為的角平分線.【點睛】本題考查了垂徑定理,同弧所對圓周角是圓心角的一半,熟練掌握圓部分的定理和相關(guān)性質(zhì)是解決本題的關(guān)鍵.23、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)DE⊥AB,DF⊥AC,AB=AC,求證∠B=∠C.再利用D是BC的中點,求證△BED≌△CFD即可得出結(jié)論.(2)根據(jù)AB=AC,∠A=60°,得出△ABC為等邊三角形.然后求出∠BDE=30°,再根據(jù)題目中給出的已知條件即可算出△ABC的周長.試題解析:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等邊對等角).∵D是BC的中點,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)∵AB=AC,∠A=60°,∴△ABC為等邊三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周長為1.考點:全等三角形的判定與性質(zhì).24、(1)點B(3,4),點C(﹣3,﹣4);(2)證明見解析;(3)定點(4,3);理由見解析.【分析】(1)由中心對稱的性質(zhì)可得OB=OC=5,點C(﹣a,﹣a﹣1),由兩點距離公式可求a的值,即可求解;(2)由兩點距離公式可求AB,AC,BC的長,利用勾股定理的逆定理可求解;(3)由旋轉(zhuǎn)的性質(zhì)可得DO=BO=CO,可得△BCD是直角三角形,以BC為直徑,作⊙O,連接OH,DE與⊙O交于點H,由圓周角定理和角平分線的性質(zhì)可得∠HBC=∠CDE=45°=∠BDE=∠BCH,可證CH=BH,∠BHC=90°,由兩點距離公式可求解.【詳解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵點B、C關(guān)于原點對稱,點B(a,a+1)(a>0),∴OB=OC=5,點C(﹣a,﹣a﹣1),∴5=,∴a=3,∴點B(3,4),∴點C(﹣3,﹣4);(2)∵點B(3,4),點C(﹣3,﹣4),點A(﹣5,0),∴BC=10,AB=4,AC=2,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)過定點,理由如下:∵將點C繞原點O順時針旋轉(zhuǎn)α度(0°<α<180°),得到點D,∴CO=DO,又∵CO=BO,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論