![江蘇省淮安市八校聯(lián)考2022-2023學年九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/dbe0738d174c76663a1626c404896ca3/dbe0738d174c76663a1626c404896ca31.gif)
![江蘇省淮安市八校聯(lián)考2022-2023學年九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/dbe0738d174c76663a1626c404896ca3/dbe0738d174c76663a1626c404896ca32.gif)
![江蘇省淮安市八校聯(lián)考2022-2023學年九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/dbe0738d174c76663a1626c404896ca3/dbe0738d174c76663a1626c404896ca33.gif)
![江蘇省淮安市八校聯(lián)考2022-2023學年九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/dbe0738d174c76663a1626c404896ca3/dbe0738d174c76663a1626c404896ca34.gif)
![江蘇省淮安市八校聯(lián)考2022-2023學年九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/dbe0738d174c76663a1626c404896ca3/dbe0738d174c76663a1626c404896ca35.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,已知拋物線與軸分別交于、兩點,將拋物線向上平移得到,過點作軸交拋物線于點,如果由拋物線、、直線及軸所圍成的陰影部分的面積為,則拋物線的函數(shù)表達式為()A. B.C. D.2.如圖,一條公路環(huán)繞山腳的部分是一段圓弧形狀(O為圓心),過A,B兩點的切線交于點C,測得∠C=120°,A,B兩點之間的距離為60m,則這段公路AB的長度是()A.10πm B.20πm C.10πm D.60m3.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°4.下列事件中,是必然事件的是()A.明天太陽從西邊出來 B.打開電視,正在播放《新聞聯(lián)播》C.蘭州是甘肅的省會 D.小明跑完所用的時間為分鐘5.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設(shè)比賽組織者應(yīng)邀請個隊參賽,則滿足的關(guān)系式為()A. B. C. D.6.已知甲、乙兩地相距20千米,汽車從甲地勻速行駛到乙地,則汽車行駛時間t(單位:小時)關(guān)于行駛速度v(單位:千米/小時)的函數(shù)關(guān)系式是()A.t=20v B.t= C.t= D.t=7.已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是()A.1 B.7 C.1或7 D.無法確定8.已知二次函數(shù)的圖象與x軸只有一個交點,則這個交點的坐標為()A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)9.一元二次方程的左邊配成完全平方后所得方程為()A. B. C. D.10.服裝店為了解某品牌外套銷售情況,對各種碼數(shù)銷量進行統(tǒng)計店主最應(yīng)關(guān)注的統(tǒng)計量是()A.平均數(shù) B.中位數(shù) C.方差 D.眾數(shù)二、填空題(每小題3分,共24分)11.如圖,四邊形是的內(nèi)接四邊形,若,則的大小為________.12.在Rt△ABC中,∠ACB=90°,若tanA=3,AB=,則BC=___13.如圖,一段拋物線記為,它與軸交于兩點、,將繞旋轉(zhuǎn)得到,交軸于,將繞旋轉(zhuǎn)得到,交軸于;如此進行下去,直至得到,若點在第8段拋物線上,則等于__________14.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,AC的中點,點F是AD的中點.若AB=8,則EF=_____.15.已知關(guān)于x的方程x2+3x+2a+1=0的一個根是0,則a=______.16.⊙O的半徑為10cm,點P到圓心O的距離為12cm,則點P和⊙O的位置關(guān)系是_____.17.如圖,已知等邊的邊長為4,,且.連結(jié),并延長交于點,則線段的長度為__________.18.如圖,等腰直角的頂點在正方形的對角線上,所在的直線交于點,交于點,連接,.下列結(jié)論中,正確的有_________(填序號).①;②是的一個三等分點;③;④;⑤.三、解答題(共66分)19.(10分)在平面直角坐標系中,已知拋物線y=x2﹣2ax+4a+2(a是常數(shù)),(Ⅰ)若該拋物線與x軸的一個交點為(﹣1,0),求a的值及該拋物線與x軸另一交點坐標;(Ⅱ)不論a取何實數(shù),該拋物線都經(jīng)過定點H.①求點H的坐標;②證明點H是所有拋物線頂點中縱坐標最大的點.20.(6分)如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?21.(6分)如圖,AB是半圓O的直徑,C為半圓弧上一點,在AC上取一點D,使BC=CD,連結(jié)BD并延長交⊙O于E,連結(jié)AE,OE交AC于F.(1)求證:△AED是等腰直角三角形;(2)如圖1,已知⊙O的半徑為.①求的長;②若D為EB中點,求BC的長.(3)如圖2,若AF:FD=7:3,且BC=4,求⊙O的半徑.22.(8分)永祚寺雙塔,又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑.位于太原市城區(qū)東南向山腳畔.數(shù)學活動小組的同學對其中一塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點到地面上一點的距離為,塔的頂端為點,且,在點處豎直放一根標桿,其頂端為,在的延長線上找一點,使三點在同一直線上,測得.(1)方法1,已知標桿,求該塔的高度;(2)方法2,測得,已知,求該塔的高度.23.(8分)如圖,在中,,.,平分交于點,過點作交于點,點是線段上的動點,連結(jié)并延長分別交,于點,.(1)求的長.(2)若點是線段的中點,求的值.24.(8分)如圖,AB為⊙O的直徑,射線AP交⊙O于C點,∠PCO的平分線交⊙O于D點,過點D作交AP于E點.(1)求證:DE為⊙O的切線;(2)若DE=3,AC=8,求直徑AB的長.25.(10分)現(xiàn)代城市綠化帶在不斷擴大,綠化用水的節(jié)約是一個非常重要的問題.如圖1、圖2所示,某噴灌設(shè)備由一根高度為0.64m的水管和一個旋轉(zhuǎn)噴頭組成,水管豎直安裝在綠化帶地面上,旋轉(zhuǎn)噴頭安裝在水管頂部(水管頂部和旋轉(zhuǎn)噴頭口之間的長度、水管在噴灌區(qū)域上的占地面積均忽略不計),旋轉(zhuǎn)噴頭可以向周圍噴出多種拋物線形水柱,從而在綠化帶上噴灌出一塊圓形區(qū)域.現(xiàn)測得噴的最遠的水柱在距離水管的水平距離3m處達到最高,高度為1m.(1)求噴灌出的圓形區(qū)域的半徑;(2)在邊長為16m的正方形綠化帶上固定安裝三個該設(shè)備,噴灌區(qū)域可以完全覆蓋該綠化帶嗎?如果可以,請說明理由;如果不可以,假設(shè)水管可以上下調(diào)整高度,求水管高度為多少時,噴灌區(qū)域恰好可以完全覆蓋該綠化帶.(以上需要畫出示意圖,并有必要的計算、推理過程)26.(10分)金牛區(qū)某學校開展“數(shù)學走進生活”的活動課,本次任務(wù)是測量大樓AB的高度.如圖,小組成員選擇在大樓AB前的空地上的點C處將無人機垂直升至空中D處,在D處測得樓AB的頂部A處的仰角為,測得樓AB的底部B處的俯角為.已知D處距地面高度為12m,則這個小組測得大樓AB的高度是多少?(結(jié)果保留整數(shù).參考數(shù)據(jù):,,)
參考答案一、選擇題(每小題3分,共30分)1、A【分析】利用二次函數(shù)圖象上點的坐標特征求出拋物線與x軸交點的橫坐標,由陰影部分的面積等于矩形OABC的面積可求出AB的長度,再利用平移的性質(zhì)“左加右減,上加下減”,即可求出拋物線的函數(shù)表達式.【詳解】當y=0時,有(x?2)2?2=0,解得:x1=0,x2=1,∴OA=1.∵S陰影=OA×AB=16,∴AB=1,∴拋物線的函數(shù)表達式為y=(x?2)2?2+1=故選A.【點睛】本題考查了拋物線與x軸的交點、矩形的面積以及二次函數(shù)圖形與幾何變換,觀察圖形,找出陰影部分的面積等于矩形OABC的面積是解題的關(guān)鍵.2、B【分析】連接OA,OB,OC,根據(jù)切線的性質(zhì)得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等邊三角形,得到OA=AB=60,根據(jù)弧長的計算公式即可得到結(jié)論.【詳解】解:連接OA,OB,OC,∵AC與BC是⊙O的切線,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等邊三角形,∴OA=AB=60,∴公路AB的長度==20πm,故選:B.【點睛】本題主要考察切線的性質(zhì)及弧長,解題關(guān)鍵是連接OA,OB,OC推出△AOB是等邊三角形.3、B【分析】根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.4、C【分析】由題意根據(jù)必然事件就是一定發(fā)生的事件,依據(jù)定義依次判斷即可.【詳解】解:A.明天太陽從西邊出來,為不可能事件,此選項排除;B.打開電視,正在播放《新聞聯(lián)播》,為不一定事件,此選項排除;C.蘭州是甘肅的省會,為必然事件,此選項當選;D.小明跑完所用的時間為分鐘,為不一定事件,此選項排除.故選:C.【點睛】本題考查必然事件的概念.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【分析】根據(jù)應(yīng)用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應(yīng)用題,正確理解題意是解題的關(guān)鍵.6、B【解析】試題分析:根據(jù)行程問題的公式路程=速度×時間,可知汽車行駛的時間t關(guān)于行駛速度v的函數(shù)關(guān)系式為t=.考點:函數(shù)關(guān)系式7、C【分析】由于弦AB、CD的具體位置不能確定,故應(yīng)分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖①,過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②當弦AB和CD在圓心異側(cè)時,如圖②,過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,EF=OF+OE=1,所以AB與CD之間的距離是1或1.故選:C.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了勾股定理及分類討論的思想的應(yīng)用.8、C【分析】根據(jù)△=b2-4ac=0時,拋物線與x軸有一個交點列出方程,解方程求出k,再根據(jù)二次函數(shù)的圖象和性質(zhì)解答.【詳解】∵二次函數(shù)的圖象與x軸只有一個交點,∴,,解得:,∴二次函數(shù),當時,,故選C.【點睛】本題考查的是拋物線與x軸的交點,掌握當△=b2-4ac=0時,拋物線與x軸有一個交點是解題的關(guān)鍵.9、B【解析】把常數(shù)項﹣5移項后,應(yīng)該在左右兩邊同時加上一次項系數(shù)﹣2的一半的平方.【詳解】把方程x2﹣2x﹣5=0的常數(shù)項移到等號的右邊,得到x2﹣2x=5,方程兩邊同時加上一次項系數(shù)一半的平方,得到:x2﹣2x+(﹣1)2=5+(﹣1)2,配方得:(x﹣1)2=1.故選B.【點睛】本題考查了配方法解一元二次方程.配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).10、D【分析】根據(jù)題意,應(yīng)該關(guān)注哪種尺碼銷量最多.【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應(yīng)該關(guān)注這組數(shù)據(jù)中的眾數(shù).故選D【點睛】本題考查了數(shù)據(jù)的選擇,根據(jù)題意分析,即可完成。屬于基礎(chǔ)題.二、填空題(每小題3分,共24分)11、100°【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠D的度數(shù),根據(jù)圓周角定理計算即可.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠B+∠D=180°,
∴∠D=180°-130°=50°,
由圓周角定理得,∠AOC=2∠D=100°,
故答案是:100°.【點睛】考查的是圓內(nèi)接四邊形的性質(zhì)、圓周角定理,掌握圓內(nèi)接四邊形的對角互補、同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.12、1【分析】由tanA==1可設(shè)BC=1x,則AC=x,依據(jù)勾股定理列方程求解可得.【詳解】∵在Rt△ABC中,tanA==1,∴設(shè)BC=1x,則AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(負值舍去),則BC=1,故答案為:1.【點睛】本題考查了解直角三角形的問題,掌握銳角三角函數(shù)的定義以及勾股定理是解題的關(guān)鍵.13、【分析】求出拋物線與x軸的交點坐標,觀察圖形可知第奇數(shù)號拋物線都在x軸上方、第偶數(shù)號拋物線都在x軸下方,再根據(jù)向右平移橫坐標相加表示出拋物線的解析式,然后把點P的橫坐標代入計算即可.【詳解】拋物線與x軸的交點為(0,0)、(2,0),將繞旋轉(zhuǎn)180°得到,則的解析式為,同理可得的解析式為,的解析式為的解析式為的解析式為的解析式為的解析式為∵點在拋物線上,∴故答案為【點睛】本題考查的是二次函數(shù)的圖像性質(zhì)與平移,能夠根據(jù)題意確定出的解析式是解題的關(guān)鍵.14、2【詳解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2,故答案為2.15、-【分析】把x=0代入原方程可得關(guān)于a的方程,解方程即得答案.【詳解】解:∵關(guān)于x的方程x2+3x+2a+1=0的一個根是x=0,∴2a+1=0,解得:a=-.故答案為:-.【點睛】本題考查了一元二次方程的解的定義,屬于基礎(chǔ)題型,熟練掌握基本知識是解題關(guān)鍵.16、點P在⊙O外【分析】根據(jù)點與圓心的距離d,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內(nèi).【詳解】解:∵⊙O的半徑r=10cm,點P到圓心O的距離OP=12cm,∴OP>r,∴點P在⊙O外,故答案為點P在⊙O外.【點睛】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內(nèi).17、1【分析】作CF⊥AB,根據(jù)等邊三角形的性質(zhì)求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,設(shè)BE為x,再根據(jù)對應(yīng)線段成比例即可求解.【詳解】作CF⊥AB,垂足為F,∵△ABC為等邊三角形,∴AF=AB=2,∴CF=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,設(shè)BE為x,∴,即解得x=1故填:1.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的根據(jù)是根據(jù)題意構(gòu)造相似三角形進行求解.18、①②④【分析】根據(jù)△CBE≌△CDF即可判斷①;由△CBE≌△CDF得出∠EBC=∠FDC=45°進而得出△DEF為直角三角形結(jié)合即可判斷②;判斷△BEN是否相似于△BCE即可判斷③;根據(jù)△BNE∽△DME即可判斷④;作EH⊥BC于點H得出△EHC∽△FDE結(jié)合tan∠HEC=tan∠DFE=2,設(shè)出線段比即可判斷⑤.【詳解】∵△CEF為等腰直角三角形∴CE=CF,∠ECF=90°又ABCD為正方形∴∠BCD=90°,BC=DC又∠BCD=∠BCE+∠ECD∠ECF=∠ECD+∠DCF∴∠DCF=∠BCE∴△CBE≌△CDF(SAS)∴BE=DF,故①正確;∴∠EBC=∠FDC=45°故∠EDF=∠EDC+∠FDC=90°又∴E是BD的一個三等分點,故②正確;∵∴即判定△BEN∽△BCE∵△ECF為等腰直角三角形,BD為正方形對角線∴∠CFE=45°=∠EDC∴∠CFE+∠MCF=∠EDC+∠DEM∴∠MCF=∠DEM然而題目并沒有告訴M是EF的中點∴∠ECM≠∠MCF∴∠ECM≠∠DEM≠∠BNE∴不能判定△BEN∽△BCE∴不能得出進而不能得出,故③錯誤;由題意可知△BNE∽△DME又BE=2DE∴BN=2DM,故④正確;作EH⊥BC于點H∵∠MCF=∠DEM又∠HCE=∠DCF∴∠HCE=∠DEM又∠EHC=∠FDE=90°∴△EHC∽△FDE∴tan∠HEC=tan∠DFE=2可設(shè)EH=x,則CH=2xEC=∴sin∠BCE=,故⑤錯誤;故答案為①②④.【點睛】本題考查的是正方形綜合,難度系數(shù)較大,涉及到了相似三角形的判定與性質(zhì),勾股定理、等腰直角三角形的性質(zhì)以及方程的思想等,需要熟練掌握相關(guān)基礎(chǔ)知識.三、解答題(共66分)19、(Ⅰ)a=﹣,拋物線與x軸另一交點坐標是(0,0);(Ⅱ)①點H的坐標為(2,6);②證明見解析.【分析】(I)根據(jù)該拋物線與x軸的一個交點為(-1,0),可以求得的值及該拋物線與x軸另一交點坐標;(II)①根據(jù)題目中的函數(shù)解析式可以求得點H的坐標;②將題目中的函數(shù)解析式化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)即可證明點H是所有拋物線頂點中縱坐標最大的點.【詳解】(Ⅰ)∵拋物線y=x2﹣2ax+4a+2與x軸的一個交點為(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣,∴y=x2+x=x(x+1),當y=0時,得x1=0,x2=﹣1,即拋物線與x軸另一交點坐標是(0,0);(Ⅱ)①∵拋物線y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不論a取何實數(shù),該拋物線都經(jīng)過定點(2,6),即點H的坐標為(2,6);②證明:∵拋物線y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴該拋物線的頂點坐標為(a,﹣(a﹣2)2+6),則當a=2時,﹣(a﹣2)2+6取得最大值6,即點H是所有拋物線頂點中縱坐標最大的點.【點睛】本題考查拋物線與x軸的交點、二次函數(shù)的性質(zhì)、二次函數(shù)的最值、二次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.20、10,1.【解析】試題分析:可以設(shè)矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得出方程求出邊長的值.試題解析:設(shè)矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得化簡,得,解得:當時,(舍去),當時,,答:所圍矩形豬舍的長為10m、寬為1m.考點:一元二次方程的應(yīng)用題.21、(1)見解析;(2)①;②;(3)【分析】(1)由已知可得△BCD是等腰直角三角形,所以∠CBD=∠EAD=45°,因為∠AEB=90°可證△AED是等腰直角三角形;(2)①已知可得∠EAD=45°,∠EOC=90°,則△EOC是等腰直角三角形,所以CE的弧長=×2×π×=;②由已知可得ED=BD,在Rt△ABE中,(2)2=AE2+(2AE)2,所以AE=2,AD=2,易證△AED∽△BCD,所以BC=;(3)由已知可得AF=AD,過點E作EG⊥AD于G,EG=AD,GF=AD,tan∠EFG=,得出FO=r,在Rt△COF中,F(xiàn)C=r,EF=r,在Rr△EFG中,由勾股定理,求出AD=r,AF=r,所以AC=AF+FC=,CD=BC=4,AC=4+AD,可得r=4+r,解出r即可.【詳解】解:(1)∵BC=CD,AB是直徑,∴△BCD是等腰直角三角形,∴∠CBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD=45°,∴∠EOC=90°,∴△EOC是等腰直角三角形,∵⊙O的半徑為,∴CE的弧長=×2×π×=,故答案為:;②∵D為EB中點,∴ED=BD,∵AE=ED,在Rt△ABE中,(2)2=AE2+(2AE)2,∴AE=2,∴AD=2,∵ED=AE,CD=BC,∠AED=∠BCD=90°,∴△AED∽△BCD,∴BC=,故答案為:;(3)∵AF:FD=7:3,∴AF=AD,過點E作EG⊥AD于G,∴EG=AD,∴GF=AD,∴tan∠EFG=,∴==,∴FO=r,在Rt△COF中,F(xiàn)C=r,∴EF=r,在Rt△EFG中,(r)2=(AD)2+(AD)2,∴AD=r,∴AF=r,∴AC=AF+FC=r,∵CD=BC=4,∴AC=4+AD=4+r,∴r=4+r,∴r=,故答案為:.【點睛】本題考查了圓的基本性質(zhì),等腰直角三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理的應(yīng)用,弧長公式的計算,銳角三角函數(shù)定義的應(yīng)用,掌握相關(guān)圖形的性質(zhì)和應(yīng)用是解題的關(guān)鍵.22、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定與性質(zhì)得出,進而得出答案;(2)根據(jù)銳角三角函數(shù)的定義列出,然后代入求值即可.【詳解】解:則即解得:答:該塔的高度為55m.在中答:該塔的高度為【點睛】本題考查相似三角形的判定和性質(zhì)及解直角三角形的應(yīng)用,熟練掌握相似三角形對應(yīng)邊的比相等和角的正切值的求法是本題的解題關(guān)鍵.23、(1);(2).【解析】(1)求出,在Rt△ADC中,由三角函數(shù)得出;(2)由三角函數(shù)得出BC=AC?tan60°=,得出,證明△DFM≌△AGM(ASA),得出DF=AG,由平行線分線段成比例定理得出,即可得出答案.【詳解】解:(1)∵平分,,∴,在中,,(2)∵∠C=90°,AC=6,∠BAC=60°,∴,∴,∵DE∥AC,∠DMF和∠AMG是對頂角,∴∠FDM=∠GAM,∠DMF=∠AMG,∵點M是線段AD的中點,∴,∵,∴,∴.由DE∥AC,得,∴,∴;【點睛】本題主要考查了全等三角形的性質(zhì)與判定,特殊角的三角函數(shù)值,掌握全等三角形的性質(zhì)與判定,特殊角的三角函數(shù)值是解題的關(guān)鍵.24、(1)證明見解析;(3)1.【分析】(1)連接OD若要證明DE為⊙O的切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 4 長方形和正方形的周長(說課稿)-2024-2025學年三年級上冊數(shù)學人教版
- 2025園林工程合同
- 2025精裝修工程合同范本
- 2025嶺南文化創(chuàng)意產(chǎn)業(yè)園項目啟動儀式籌辦服務(wù)合同協(xié)議書
- 2025含破碎錘挖掘機買賣合同書
- 2025咖啡粉批發(fā)合同
- 2025金屬制品委托加工合同
- 2023三年級英語上冊 Unit 5 Let's eat The first period第一課時說課稿 人教PEP
- 5 應(yīng)對自然災(zāi)害(說課稿)2023-2024學年統(tǒng)編版道德與法治六年級下冊
- 保母阿姨合同范例
- 頸復(fù)康腰痛寧產(chǎn)品知識課件
- 2024年低壓電工證理論考試題庫及答案
- 微電網(wǎng)市場調(diào)查研究報告
- 《民航服務(wù)溝通技巧》教案第14課民航服務(wù)人員上行溝通的技巧
- 中國古代舞蹈史
- MT/T 538-1996煤鉆桿
- 小學六年級語文閱讀理解100篇(及答案)
- CB/T 467-1995法蘭青銅閘閥
- 氣功修煉十奧妙
- 勾股定理的歷史與證明課件
- 中醫(yī)診斷學八綱辨證課件
評論
0/150
提交評論