版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件2.已知,復數(shù),,且為實數(shù),則()A. B. C.3 D.-33.已知,,若,則向量在向量方向的投影為()A. B. C. D.4.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.85.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.6.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.7.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.28.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.9.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.10.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要11.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,且圓心在直線上的圓的半徑為__________.14.展開式中的系數(shù)為________.15.函數(shù)的定義域是____________.(寫成區(qū)間的形式)16.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一個工廠在某年里連續(xù)10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數(shù)據:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關系,請用相關系數(shù)加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據:,,,,.②參考公式:相關系數(shù),,.18.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.19.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.20.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(shù)(AQI)的檢測數(shù)據,結果統(tǒng)計如表:AQI空氣質量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.(i)記該企業(yè)9月每天因空氣質量造成的經濟損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.21.(12分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.22.(10分)設函數(shù).(1)當時,解不等式;(2)設,且當時,不等式有解,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
解出兩個不等式的解集,根據充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.2.B【解析】
把和代入再由復數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復數(shù)的概念,考查運算求解能力.3.B【解析】
由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題4.C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.5.A【解析】
先通過降冪公式和輔助角法將函數(shù)轉化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.6.C【解析】
先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結合的思想、轉化與化歸的思想,是一道中檔題.7.B【解析】
求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.8.D【解析】
根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.9.B【解析】
根據在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.10.B【解析】
由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.11.D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.12.D【解析】
根據三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據弦的垂直平分線經過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【點睛】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.14.30【解析】
先將問題轉化為二項式的系數(shù)問題,利用二項展開式的通項公式求出展開式的第項,令的指數(shù)分別等于2,4,求出特定項的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項式展開式中的指數(shù)為2和4時的系數(shù)之和,由于二項式的通項公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點睛】本題考查利用二項式展開式的通項公式解決二項展開式的特定項的問題,考查學生的轉化能力,屬于基礎題.15.【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.16.11【解析】
將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)①②3.386(萬元)【解析】
(1)利用代入數(shù)值,求出后即可得解;(2)①計算出、后,利用求出后即可得解;②把代入線性回歸方程,計算即可得解.【詳解】(1)由已知條件得,,∴,說明與正相關,且相關性很強.(2)①由已知求得,,所以,所求回歸直線方程為.②當時,(萬元),此時產品的總成本約為3.386萬元.【點睛】本題考查了相關系數(shù)的應用以及線性回歸方程的求解和應用,考查了計算能力,屬于中檔題.18.(1)(2)【解析】
(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結合已知條件計算出結果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結合三角形熟練運用各公式是解題關鍵,此類題目是??碱}型,能夠運用公式進行邊角互化,需要掌握解題方法.19.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)求導得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設,求,令,故在單調遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當時,在單調遞減,在單調遞增;當時,在單調遞增,在單調遞減.(Ⅱ)(),即,().令(),則,令,,故在單調遞增,注意到,,于是存在使得,可知在單調遞增,在單調遞減.∴.綜上知,.【點睛】本題考查了函數(shù)的單調性,恒成立問題,意在考查學生對于導數(shù)知識的綜合應用能力.20.(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進行計算以及概率表示,可得結果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結果.(ii)由(i)的條件結合7月與8月空氣質量所對應的概率,可得7月與8月經濟損失的期望和,最后7月、8月、9月經濟損失總額的數(shù)學期望與2.88萬元比較,可得結果.【詳解】(1)設ξ為選取的3天中空氣質量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經濟損失的數(shù)學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質量造成的經濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質量造成經濟損失總額的數(shù)學期望為320×(31+31)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《現(xiàn)代古箏演奏技巧在民族響樂團中的影響探究》5300字(論文)】
- 【《加加食品公司人力資源績效管理存在的問題及優(yōu)化案例8600字》(論文)】
- 新學期計劃書職中300字(15篇)
- 2024年客服年終工作總結參考模板(三篇)
- 2024年年終總結參考樣本(四篇)
- 2024年醫(yī)院院感科質控小組成員及職責范本(二篇)
- 2024年商鋪買賣合同范例(四篇)
- 2024年小學衛(wèi)生室工作計劃(三篇)
- 2024年幼兒園小班安全計劃例文(四篇)
- 送貨簡易合同范本(2篇)
- 3-4單元測試-2024-2025學年統(tǒng)編版語文六年級上冊
- 2024-2030年中國濱海旅游行業(yè)發(fā)展分析及投資戰(zhàn)略研究咨詢報告
- 八年級物理第一次月考卷(考試版A3)(遼寧專用人教版2024第1~3章第2節(jié))
- 2024-2030年中國農村商業(yè)銀行行業(yè)市場深度調研及發(fā)展趨勢與投資前景研究報告
- 2024至2030年中國商業(yè)POS機行業(yè)現(xiàn)狀調研及未來發(fā)展展望報告
- 公共衛(wèi)生突發(fā)事件應急處理與防治考核試卷
- 5.2 外力作用與地表形態(tài)高三地理一輪復習課件
- NB/T 11446-2023煤礦連采連充技術要求
- 護理美學-第一章 美學概述
- 空調管路設計規(guī)范
評論
0/150
提交評論