版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1第一章矢量分析1第一章矢量分析2本章內(nèi)容1.1矢量代數(shù)1.2
常用正交曲線坐標(biāo)系1.3
標(biāo)量場的梯度1.4
矢量場的通量與散度1.5
矢量場的環(huán)流和旋度1.6
無旋場與無散場1.7
拉普拉斯運(yùn)算與格林定理1.8
亥姆霍茲定理2本章內(nèi)容31.標(biāo)量和矢量矢量的大小或模:矢量的單位矢量:標(biāo)量:一個只用大小描述的物理量。矢量的代數(shù)表示:1.1矢量代數(shù)矢量:一個既有大小又有方向特性的物理量,常用黑體字母或帶箭頭的字母表示。
矢量的幾何表示:一個矢量可用一條有方向的線段來表示
注意:單位矢量不一定是常矢量。
矢量的幾何表示常矢量:大小和方向均不變的矢量。
31.標(biāo)量和矢量矢量的大小或模:矢量的單位矢量:標(biāo)量:一個4矢量用坐標(biāo)分量表示zxy4矢量用坐標(biāo)分量表示zxy5(1)矢量的加減法兩矢量的加減在幾何上是以這兩矢量為鄰邊的平行四邊形的對角線,如圖所示。矢量的加減符合交換律和結(jié)合律2.矢量的代數(shù)運(yùn)算矢量的加法矢量的減法在直角坐標(biāo)系中兩矢量的加法和減法:結(jié)合律交換律5(1)矢量的加減法兩矢量的加減在幾何上是以這兩矢量6(2)標(biāo)量乘矢量(3)矢量的標(biāo)積(點積)——矢量的標(biāo)積符合交換律q矢量與的夾角6(2)標(biāo)量乘矢量(3)矢量的標(biāo)積(點積)——矢量的標(biāo)積符合7(4)矢量的矢積(叉積)qsinABq矢量與的叉積用坐標(biāo)分量表示為寫成行列式形式為若,則若,則7(4)矢量的矢積(叉積)qsinABq矢量與的叉積8(5)矢量的混合運(yùn)算——
分配律——分配律——標(biāo)量三重積——矢量三重積8(5)矢量的混合運(yùn)算——分配律——分配律——標(biāo)量三重9
三維空間任意一點的位置可通過三條相互正交曲線的交點來確定。1.2
三種常用的正交曲線坐標(biāo)系
在電磁場與電磁波理論中,三種常用的正交曲線坐標(biāo)系為:直角坐標(biāo)系、圓柱坐標(biāo)系和球面坐標(biāo)系。三條正交曲線組成的確定三維空間任意點位置的體系,稱為正交曲線坐標(biāo)系;三條正交曲線稱為坐標(biāo)軸;描述坐標(biāo)軸的量稱為坐標(biāo)變量。9三維空間任意一點的位置可通過三條相互正交曲線的交點101、直角坐標(biāo)系
位置矢量面元矢量線元矢量體積元坐標(biāo)變量坐標(biāo)單位矢量
點P(x0,y0,z0)0yy=(平面)
o
x
y
z0xx=(平面)0zz=(平面)P
直角坐標(biāo)系
x
yz直角坐標(biāo)系的長度元、面積元、體積元
odzdydx101、直角坐標(biāo)系位置矢量面元矢量線元矢量體積元坐標(biāo)變量坐112、圓柱面坐標(biāo)系坐標(biāo)變量坐標(biāo)單位矢量位置矢量線元矢量體積元面元矢量112、圓柱面坐標(biāo)系坐標(biāo)變量坐標(biāo)單位矢量位置矢量線元矢量體積123、球面坐標(biāo)系球面坐標(biāo)系球坐標(biāo)系中的線元、面元和體積元坐標(biāo)變量坐標(biāo)單位矢量位置矢量線元矢量體積元面元矢量123、球面坐標(biāo)系球面坐標(biāo)系球坐標(biāo)系中的線元、面元和體積元坐134、坐標(biāo)單位矢量之間的關(guān)系
直角坐標(biāo)與圓柱坐標(biāo)系圓柱坐標(biāo)與球坐標(biāo)系直角坐標(biāo)與球坐標(biāo)系oqrz單位圓
柱坐標(biāo)系與求坐標(biāo)系之間坐標(biāo)單位矢量的關(guān)系qq
ofxy單位圓
直角坐標(biāo)系與柱坐標(biāo)系之間坐標(biāo)單位矢量的關(guān)系
f134、坐標(biāo)單位矢量之間的關(guān)系直角坐標(biāo)與圓柱坐標(biāo)與直角坐標(biāo)141.3標(biāo)量場的梯度如果物理量是標(biāo)量,稱該場為標(biāo)量場。
例如:溫度場、電位場、高度場等。如果物理量是矢量,稱該場為矢量場。
例如:流速場、重力場、電場、磁場等。如果場與時間無關(guān),稱為靜態(tài)場,反之為時變場。時變標(biāo)量場和矢量場可分別表示為:
確定空間區(qū)域上的每一點都有確定物理量與之對應(yīng),稱在該區(qū)域上定義了一個場。從數(shù)學(xué)上看,場是定義在空間區(qū)域上的函數(shù):標(biāo)量場和矢量場靜態(tài)標(biāo)量場和矢量場可分別表示為:141.3標(biāo)量場的梯度如果物理量是標(biāo)量,稱該場為標(biāo)量場。15標(biāo)量場的等值面
標(biāo)量場的等值線(面)等值面:
標(biāo)量場取得同一數(shù)值的點在空間形成的曲面。等值面方程:常數(shù)C取一系列不同的值,就得到一系列不同的等值面,形成等值面族;標(biāo)量場的等值面充滿場所在的整個空間;標(biāo)量場的等值面互不相交。
等值面的特點:意義:
形象直觀地描述了物理量在空間的分布狀態(tài)。15標(biāo)量場的等值面 標(biāo)量場的等值線(面)等值面:標(biāo)量場取得162.方向?qū)?shù)意義:方向性導(dǎo)數(shù)表示場沿某方向的空間變化率。概念:
——
u(M)沿方向增加;
——
u(M)沿方向減小;
——
u(M)沿方向無變化。
M0M方向?qū)?shù)的概念
特點:方向性導(dǎo)數(shù)既與點M0有關(guān),也與方向有關(guān)。問題:在什么方向上變化率最大、其最大的變化率為多少?——的方向余弦。
式中:
162.方向?qū)?shù)意義:方向性導(dǎo)數(shù)表示場沿某方向的空間變化17梯度的表達(dá)式:圓柱面坐標(biāo)系
球面坐標(biāo)系直角面坐標(biāo)系
3、標(biāo)量場的梯度(或)意義:描述標(biāo)量場在某點的最大變化率及其變化最大的方向概念:,其中
取得最大值的方向17梯度的表達(dá)式:圓柱面坐標(biāo)系球面坐標(biāo)系直角面坐標(biāo)系3、18標(biāo)量場的梯度是矢量場,它在空間某點的方向表示該點場變化最大(增大)的方向,其數(shù)值表示變化最大方向上場的空間變化率。標(biāo)量場在某個方向上的方向?qū)?shù),是梯度在該方向上的投影。梯度的性質(zhì):梯度運(yùn)算的基本公式:標(biāo)量場的梯度垂直于通過該點的等值面(或切平面)18標(biāo)量場的梯度是矢量場,它在空間某點的方向表示該點場變化最19
例1.2.1
設(shè)一標(biāo)量函數(shù)(x,y,z)=x2+y2-z描述了空間標(biāo)量場。試求:
(1)該函數(shù)在點P(1,1,1)處的梯度,以及表示該梯度方向的單位矢量;(2)求該函數(shù)沿單位矢量el=
excos60+eycos45
+ezcos60方向的方向?qū)?shù),并以點P(1,1,1)處的方向?qū)?shù)值與該點的梯度值作以比較,得出相應(yīng)結(jié)論。
解
(1)由梯度計算公式,可求得P點的梯度為19例1.2.1設(shè)一標(biāo)量函數(shù)(x,y,z)=20表征其方向的單位矢量
(2)由方向?qū)?shù)與梯度之間的關(guān)系式可知,沿el方向的方向?qū)?shù)為對于給定的P點,上述方向?qū)?shù)在該點取值為20表征其方向的單位矢量(2)由方向?qū)?shù)與梯度21而該點的梯度值為
顯然,梯度描述了P點處標(biāo)量函數(shù)的最大變化率,即最大的方向?qū)?shù),故恒成立。21而該點的梯度值為顯然,梯度描述了P點處標(biāo)221.4矢量場的通量與散度
1、矢量線
意義:形象直觀地描述了矢量場的空間分布狀態(tài)。矢量線方程:概念:矢量線是這樣的曲線,其上每一點的切線方向代表了該點矢量場的方向。矢量線oM
221.4矢量場的通量與散度1、矢量線意義232、矢量場的通量
問題:如何定量描述矢量場的大?。恳胪康母拍?。
通量的概念:其中:——面積元矢量;——面積元的法向單位矢量;——穿過面積元的通量;
如果曲面S是閉合的,則規(guī)定曲面法矢由閉合曲面內(nèi)指向外,矢量場對閉合曲面的通量是:面積元矢量232、矢量場的通量 問題:如何定量描述矢量場的大小?24通過閉合曲面有凈的矢量線穿出有凈的矢量線進(jìn)入進(jìn)入與穿出閉合曲面的矢量線相等矢量場通過閉合曲面通量的三種可能結(jié)果
閉合曲面的通量從宏觀上建立了矢量場通過閉合曲面的通量與曲面內(nèi)產(chǎn)生矢量場的源的關(guān)系。通量的物理意義24通過閉合曲面有凈的矢量線穿出有凈的矢量線進(jìn)入進(jìn)入與穿出閉253、矢量場的散度為了定量研究場與源之間的關(guān)系,需建立場空間任意點(小體積元)的通量源與矢量場(小體積元曲面的通量)的關(guān)系。利用極限方法得到這一關(guān)系:稱為矢量場的散度。
散度是矢量通過包含該點的任意閉合小曲面的通量與曲面元體積之比的極限。253、矢量場的散度為了定量研究場與源之間的26柱面坐標(biāo)系球面坐標(biāo)系直角坐標(biāo)系散度的表達(dá)式:散度的有關(guān)公式:26柱面坐標(biāo)系球面坐標(biāo)系直角坐標(biāo)系散度的表達(dá)式:散度的有關(guān)公27直角坐標(biāo)系下散度表達(dá)式的推導(dǎo)
由此可知,穿出前、后兩側(cè)面的凈通量值為oxy在直角坐標(biāo)系中計算?·FzzDxDyDP
不失一般性,令包圍P點的微體積V為一直平行六面體,如圖所示。則27直角坐標(biāo)系下散度表達(dá)式的推導(dǎo)由此可28根據(jù)定義,則得到直角坐標(biāo)系中的散度表達(dá)式為
同理,分析穿出另兩組側(cè)面的凈通量,并合成之,即得由點P穿出該六面體的凈通量為28根據(jù)定義,則得到直角坐標(biāo)系中的散度表達(dá)式為294、散度定理體積的剖分VS1S2en2en1S從散度的定義出發(fā),可以得到矢量場在空間任意閉合曲面的通量等于該閉合曲面所包含體積中矢量場的散度的體積分,即散度定理是閉合曲面積分與體積分之間的一個變換關(guān)系,在電磁理論中有著廣泛的應(yīng)用。294、散度定理體積的剖分VS1S2en2en1S301.5矢量場的環(huán)流和旋度
矢量場的環(huán)流與旋渦源
例如:流速場不是所有的矢量場都由通量源激發(fā)。存在另一類不同于通量源的矢量源,它所激發(fā)的矢量場的力線是閉合的,它對于任何閉合曲面的通量為零。但在場所定義的空間中閉合路徑的積分不為零。301.5矢量場的環(huán)流和旋度矢量場的環(huán)流與旋渦源31
如磁場沿任意閉合曲線的積分與通過閉合曲線所圍曲面的電流成正比,即:上式建立了磁場的環(huán)流與電流的關(guān)系。
31如磁場沿任意閉合曲線的積分與通過閉合曲線所圍曲面32如果矢量場的任意閉合回路的環(huán)流恒為零,稱該矢量場為無旋場,又稱為保守場。如果矢量場對于任何閉合曲線的環(huán)流不為零,稱該矢量場為有旋矢量場,能夠激發(fā)有旋矢量場的源稱為旋渦源。電流是磁場的旋渦源。環(huán)流的概念矢量場對于閉合曲線C的環(huán)流定義為該矢量對閉合曲線C的線積分,即32如果矢量場的任意閉合回路的環(huán)流恒為零,稱該矢量場為無旋場33過點M作一微小曲面S,它的邊界曲線記為C,曲面的法線方向n與曲線的繞向成右手螺旋法則。當(dāng)S0時,極限稱為矢量場在點M處沿方向n的環(huán)流面密度。
矢量場的環(huán)流給出了矢量場與積分回路所圍曲面內(nèi)旋渦源的宏觀聯(lián)系。為了給出空間任意點矢量場與旋渦源的關(guān)系,引入矢量場的旋度。
特點:其值與點M處的方向n有關(guān)。2、矢量場的旋度()
(1)環(huán)流面密度33過點M作一微小曲面S,它的邊界曲線記34而
推導(dǎo)
的示意圖如圖所示。oyDz
DyCMzx1234計算的示意圖
直角坐標(biāo)系中、、的表達(dá)式34而推導(dǎo)的示意圖如圖所示。oyD35于是
同理可得故得概念:矢量場在M點處的旋度為一矢量,其數(shù)值為M點的環(huán)流面密度最大值,其方向為取得環(huán)量密度最大值時面積元的法線方向,即物理意義:旋渦源密度矢量。性質(zhì):(2)矢量場的旋度35于是同理可得故得概念:矢量場在M點處的旋度為一矢量,其36旋度的計算公式:直角坐標(biāo)系圓柱面坐標(biāo)系球面坐標(biāo)系36旋度的計算公式:直角坐標(biāo)系圓柱面坐標(biāo)系球面坐標(biāo)系37旋度的有關(guān)公式:矢量場的旋度的散度恒為零標(biāo)量場的梯度的旋度恒為零37旋度的有關(guān)公式:矢量場的旋度標(biāo)量場的梯度383、Stokes定理Stokes定理是閉合曲線積分與曲面積分之間的一個變換關(guān)系式,也在電磁理論中有廣泛的應(yīng)用。曲面的剖分方向相反大小相等結(jié)果抵消
從旋度的定義出發(fā),可以得到矢量場沿任意閉合曲線的環(huán)流等于矢量場的旋度在該閉合曲線所圍的曲面的通量,即383、Stokes定理Stoke394、散度和旋度的區(qū)別
394、散度和旋度的區(qū)別401、矢量場的源散度源:是標(biāo)量,產(chǎn)生的矢量場在包圍源的封閉面上的通量等于(或正比于)該封閉面內(nèi)所包圍的源的總和,源在一給定點的(體)密度等于(或正比于)矢量場在該點的散度;
旋度源:是矢量,產(chǎn)生的矢量場具有渦旋性質(zhì),穿過一曲面的旋度源等于(或正比于)沿此曲面邊界的閉合回路的環(huán)量,在給定點上,這種源的(面)密度等于(或正比于)矢量場在該點的旋度。1.6無旋場與無散場401、矢量場的源散度源:是標(biāo)量,產(chǎn)生的矢量場在包圍源的封閉412、矢量場按源的分類(1)無旋場性質(zhì):,線積分與路徑無關(guān),是保守場。僅有散度源而無旋度源的矢量場,無旋場可以用標(biāo)量場的梯度表示為例如:靜電場412、矢量場按源的分類(1)無旋場性質(zhì):,線積分與路徑無關(guān)42(2)無散場僅有旋度源而無散度源的矢量場,即性質(zhì):無散場可以表示為另一個矢量場的旋度例如,恒定磁場42(2)無散場僅有旋度源而無散度源的矢量場,即性質(zhì):無43(3)無旋、無散場(源在所討論的區(qū)域之外)(4)有散、有旋場這樣的場可分解為兩部分:無旋場部分和無散場部分無旋場部分無散場部分43(3)無旋、無散場(源在所討論的區(qū)域之外)(4)有散、有441.7拉普拉斯運(yùn)算與格林定理
1、拉普拉斯運(yùn)算標(biāo)量拉普拉斯運(yùn)算概念:——拉普拉斯算符直角坐標(biāo)系計算公式:圓柱坐標(biāo)系球坐標(biāo)系441.7拉普拉斯運(yùn)算與格林定理1、拉普拉斯運(yùn)算45矢量拉普拉斯運(yùn)算概念:即注意:對于非直角分量,直角坐標(biāo)系中:如:45矢量拉普拉斯運(yùn)算概念:即注意:對于非直角分量,直角坐462.格林定理
設(shè)任意兩個標(biāo)量場
及,若在區(qū)域V中具有連續(xù)的二階偏導(dǎo)數(shù),那么,可以證明該兩個標(biāo)量場
及
滿足下列等式。
根據(jù)方向?qū)?shù)與梯度的關(guān)系,上式又可寫成式中S
為包圍V的閉合曲面,為標(biāo)量場
在S表面的外法線en
方向上的偏導(dǎo)數(shù)。以上兩式稱為標(biāo)量第一格林定理。SV,462.格林定理設(shè)任意兩個標(biāo)量場及,若47基于上式還可獲得下列兩式:上兩式稱為標(biāo)量第二格林定理。
格林定理說明了區(qū)域V中的場與邊界S上的場之間的關(guān)系。因此,利用格林定理可以將區(qū)域中場的求解問題轉(zhuǎn)變?yōu)檫吔缟蠄龅那蠼鈫栴}。
此外,格林定理反映了兩種標(biāo)量場之間滿足的關(guān)系。因此,如果已知其中一種場的分布,即可利用格林定理求解另一種場的分布。格林定理廣泛地用于電磁理論。47基于上式還可獲得下列兩式:上兩式稱為標(biāo)量第二格林定理。48亥姆霍茲定理:
若矢量場在無限空間中處處單值,且其導(dǎo)數(shù)連續(xù)有界,源分布在有限區(qū)域中,則當(dāng)矢量場的散度及旋度給定后,該矢量場可表示為式中:
亥姆霍茲定理說明:在無界空間區(qū)域,矢量場可由其散度及旋度確定。1.8亥姆霍茲定理48亥姆霍茲定理:若矢量場在無限空間中處處單49有界區(qū)域
在有界區(qū)域,矢量場不但與該區(qū)域中的散度和旋度有關(guān),還與區(qū)域邊界上矢量場的切向分量和法向分量有關(guān)。49有界區(qū)域在有界區(qū)域,矢量場不但與該區(qū)域中50第一章矢量分析1第一章矢量分析51本章內(nèi)容1.1矢量代數(shù)1.2
常用正交曲線坐標(biāo)系1.3
標(biāo)量場的梯度1.4
矢量場的通量與散度1.5
矢量場的環(huán)流和旋度1.6
無旋場與無散場1.7
拉普拉斯運(yùn)算與格林定理1.8
亥姆霍茲定理2本章內(nèi)容521.標(biāo)量和矢量矢量的大小或模:矢量的單位矢量:標(biāo)量:一個只用大小描述的物理量。矢量的代數(shù)表示:1.1矢量代數(shù)矢量:一個既有大小又有方向特性的物理量,常用黑體字母或帶箭頭的字母表示。
矢量的幾何表示:一個矢量可用一條有方向的線段來表示
注意:單位矢量不一定是常矢量。
矢量的幾何表示常矢量:大小和方向均不變的矢量。
31.標(biāo)量和矢量矢量的大小或模:矢量的單位矢量:標(biāo)量:一個53矢量用坐標(biāo)分量表示zxy4矢量用坐標(biāo)分量表示zxy54(1)矢量的加減法兩矢量的加減在幾何上是以這兩矢量為鄰邊的平行四邊形的對角線,如圖所示。矢量的加減符合交換律和結(jié)合律2.矢量的代數(shù)運(yùn)算矢量的加法矢量的減法在直角坐標(biāo)系中兩矢量的加法和減法:結(jié)合律交換律5(1)矢量的加減法兩矢量的加減在幾何上是以這兩矢量55(2)標(biāo)量乘矢量(3)矢量的標(biāo)積(點積)——矢量的標(biāo)積符合交換律q矢量與的夾角6(2)標(biāo)量乘矢量(3)矢量的標(biāo)積(點積)——矢量的標(biāo)積符合56(4)矢量的矢積(叉積)qsinABq矢量與的叉積用坐標(biāo)分量表示為寫成行列式形式為若,則若,則7(4)矢量的矢積(叉積)qsinABq矢量與的叉積57(5)矢量的混合運(yùn)算——
分配律——分配律——標(biāo)量三重積——矢量三重積8(5)矢量的混合運(yùn)算——分配律——分配律——標(biāo)量三重58
三維空間任意一點的位置可通過三條相互正交曲線的交點來確定。1.2
三種常用的正交曲線坐標(biāo)系
在電磁場與電磁波理論中,三種常用的正交曲線坐標(biāo)系為:直角坐標(biāo)系、圓柱坐標(biāo)系和球面坐標(biāo)系。三條正交曲線組成的確定三維空間任意點位置的體系,稱為正交曲線坐標(biāo)系;三條正交曲線稱為坐標(biāo)軸;描述坐標(biāo)軸的量稱為坐標(biāo)變量。9三維空間任意一點的位置可通過三條相互正交曲線的交點591、直角坐標(biāo)系
位置矢量面元矢量線元矢量體積元坐標(biāo)變量坐標(biāo)單位矢量
點P(x0,y0,z0)0yy=(平面)
o
x
y
z0xx=(平面)0zz=(平面)P
直角坐標(biāo)系
x
yz直角坐標(biāo)系的長度元、面積元、體積元
odzdydx101、直角坐標(biāo)系位置矢量面元矢量線元矢量體積元坐標(biāo)變量坐602、圓柱面坐標(biāo)系坐標(biāo)變量坐標(biāo)單位矢量位置矢量線元矢量體積元面元矢量112、圓柱面坐標(biāo)系坐標(biāo)變量坐標(biāo)單位矢量位置矢量線元矢量體積613、球面坐標(biāo)系球面坐標(biāo)系球坐標(biāo)系中的線元、面元和體積元坐標(biāo)變量坐標(biāo)單位矢量位置矢量線元矢量體積元面元矢量123、球面坐標(biāo)系球面坐標(biāo)系球坐標(biāo)系中的線元、面元和體積元坐624、坐標(biāo)單位矢量之間的關(guān)系
直角坐標(biāo)與圓柱坐標(biāo)系圓柱坐標(biāo)與球坐標(biāo)系直角坐標(biāo)與球坐標(biāo)系oqrz單位圓
柱坐標(biāo)系與求坐標(biāo)系之間坐標(biāo)單位矢量的關(guān)系qq
ofxy單位圓
直角坐標(biāo)系與柱坐標(biāo)系之間坐標(biāo)單位矢量的關(guān)系
f134、坐標(biāo)單位矢量之間的關(guān)系直角坐標(biāo)與圓柱坐標(biāo)與直角坐標(biāo)631.3標(biāo)量場的梯度如果物理量是標(biāo)量,稱該場為標(biāo)量場。
例如:溫度場、電位場、高度場等。如果物理量是矢量,稱該場為矢量場。
例如:流速場、重力場、電場、磁場等。如果場與時間無關(guān),稱為靜態(tài)場,反之為時變場。時變標(biāo)量場和矢量場可分別表示為:
確定空間區(qū)域上的每一點都有確定物理量與之對應(yīng),稱在該區(qū)域上定義了一個場。從數(shù)學(xué)上看,場是定義在空間區(qū)域上的函數(shù):標(biāo)量場和矢量場靜態(tài)標(biāo)量場和矢量場可分別表示為:141.3標(biāo)量場的梯度如果物理量是標(biāo)量,稱該場為標(biāo)量場。64標(biāo)量場的等值面
標(biāo)量場的等值線(面)等值面:
標(biāo)量場取得同一數(shù)值的點在空間形成的曲面。等值面方程:常數(shù)C取一系列不同的值,就得到一系列不同的等值面,形成等值面族;標(biāo)量場的等值面充滿場所在的整個空間;標(biāo)量場的等值面互不相交。
等值面的特點:意義:
形象直觀地描述了物理量在空間的分布狀態(tài)。15標(biāo)量場的等值面 標(biāo)量場的等值線(面)等值面:標(biāo)量場取得652.方向?qū)?shù)意義:方向性導(dǎo)數(shù)表示場沿某方向的空間變化率。概念:
——
u(M)沿方向增加;
——
u(M)沿方向減?。?/p>
——
u(M)沿方向無變化。
M0M方向?qū)?shù)的概念
特點:方向性導(dǎo)數(shù)既與點M0有關(guān),也與方向有關(guān)。問題:在什么方向上變化率最大、其最大的變化率為多少?——的方向余弦。
式中:
162.方向?qū)?shù)意義:方向性導(dǎo)數(shù)表示場沿某方向的空間變化66梯度的表達(dá)式:圓柱面坐標(biāo)系
球面坐標(biāo)系直角面坐標(biāo)系
3、標(biāo)量場的梯度(或)意義:描述標(biāo)量場在某點的最大變化率及其變化最大的方向概念:,其中
取得最大值的方向17梯度的表達(dá)式:圓柱面坐標(biāo)系球面坐標(biāo)系直角面坐標(biāo)系3、67標(biāo)量場的梯度是矢量場,它在空間某點的方向表示該點場變化最大(增大)的方向,其數(shù)值表示變化最大方向上場的空間變化率。標(biāo)量場在某個方向上的方向?qū)?shù),是梯度在該方向上的投影。梯度的性質(zhì):梯度運(yùn)算的基本公式:標(biāo)量場的梯度垂直于通過該點的等值面(或切平面)18標(biāo)量場的梯度是矢量場,它在空間某點的方向表示該點場變化最68
例1.2.1
設(shè)一標(biāo)量函數(shù)(x,y,z)=x2+y2-z描述了空間標(biāo)量場。試求:
(1)該函數(shù)在點P(1,1,1)處的梯度,以及表示該梯度方向的單位矢量;(2)求該函數(shù)沿單位矢量el=
excos60+eycos45
+ezcos60方向的方向?qū)?shù),并以點P(1,1,1)處的方向?qū)?shù)值與該點的梯度值作以比較,得出相應(yīng)結(jié)論。
解
(1)由梯度計算公式,可求得P點的梯度為19例1.2.1設(shè)一標(biāo)量函數(shù)(x,y,z)=69表征其方向的單位矢量
(2)由方向?qū)?shù)與梯度之間的關(guān)系式可知,沿el方向的方向?qū)?shù)為對于給定的P點,上述方向?qū)?shù)在該點取值為20表征其方向的單位矢量(2)由方向?qū)?shù)與梯度70而該點的梯度值為
顯然,梯度描述了P點處標(biāo)量函數(shù)的最大變化率,即最大的方向?qū)?shù),故恒成立。21而該點的梯度值為顯然,梯度描述了P點處標(biāo)711.4矢量場的通量與散度
1、矢量線
意義:形象直觀地描述了矢量場的空間分布狀態(tài)。矢量線方程:概念:矢量線是這樣的曲線,其上每一點的切線方向代表了該點矢量場的方向。矢量線oM
221.4矢量場的通量與散度1、矢量線意義722、矢量場的通量
問題:如何定量描述矢量場的大?。恳胪康母拍?。
通量的概念:其中:——面積元矢量;——面積元的法向單位矢量;——穿過面積元的通量;
如果曲面S是閉合的,則規(guī)定曲面法矢由閉合曲面內(nèi)指向外,矢量場對閉合曲面的通量是:面積元矢量232、矢量場的通量 問題:如何定量描述矢量場的大小?73通過閉合曲面有凈的矢量線穿出有凈的矢量線進(jìn)入進(jìn)入與穿出閉合曲面的矢量線相等矢量場通過閉合曲面通量的三種可能結(jié)果
閉合曲面的通量從宏觀上建立了矢量場通過閉合曲面的通量與曲面內(nèi)產(chǎn)生矢量場的源的關(guān)系。通量的物理意義24通過閉合曲面有凈的矢量線穿出有凈的矢量線進(jìn)入進(jìn)入與穿出閉743、矢量場的散度為了定量研究場與源之間的關(guān)系,需建立場空間任意點(小體積元)的通量源與矢量場(小體積元曲面的通量)的關(guān)系。利用極限方法得到這一關(guān)系:稱為矢量場的散度。
散度是矢量通過包含該點的任意閉合小曲面的通量與曲面元體積之比的極限。253、矢量場的散度為了定量研究場與源之間的75柱面坐標(biāo)系球面坐標(biāo)系直角坐標(biāo)系散度的表達(dá)式:散度的有關(guān)公式:26柱面坐標(biāo)系球面坐標(biāo)系直角坐標(biāo)系散度的表達(dá)式:散度的有關(guān)公76直角坐標(biāo)系下散度表達(dá)式的推導(dǎo)
由此可知,穿出前、后兩側(cè)面的凈通量值為oxy在直角坐標(biāo)系中計算?·FzzDxDyDP
不失一般性,令包圍P點的微體積V為一直平行六面體,如圖所示。則27直角坐標(biāo)系下散度表達(dá)式的推導(dǎo)由此可77根據(jù)定義,則得到直角坐標(biāo)系中的散度表達(dá)式為
同理,分析穿出另兩組側(cè)面的凈通量,并合成之,即得由點P穿出該六面體的凈通量為28根據(jù)定義,則得到直角坐標(biāo)系中的散度表達(dá)式為784、散度定理體積的剖分VS1S2en2en1S從散度的定義出發(fā),可以得到矢量場在空間任意閉合曲面的通量等于該閉合曲面所包含體積中矢量場的散度的體積分,即散度定理是閉合曲面積分與體積分之間的一個變換關(guān)系,在電磁理論中有著廣泛的應(yīng)用。294、散度定理體積的剖分VS1S2en2en1S791.5矢量場的環(huán)流和旋度
矢量場的環(huán)流與旋渦源
例如:流速場不是所有的矢量場都由通量源激發(fā)。存在另一類不同于通量源的矢量源,它所激發(fā)的矢量場的力線是閉合的,它對于任何閉合曲面的通量為零。但在場所定義的空間中閉合路徑的積分不為零。301.5矢量場的環(huán)流和旋度矢量場的環(huán)流與旋渦源80
如磁場沿任意閉合曲線的積分與通過閉合曲線所圍曲面的電流成正比,即:上式建立了磁場的環(huán)流與電流的關(guān)系。
31如磁場沿任意閉合曲線的積分與通過閉合曲線所圍曲面81如果矢量場的任意閉合回路的環(huán)流恒為零,稱該矢量場為無旋場,又稱為保守場。如果矢量場對于任何閉合曲線的環(huán)流不為零,稱該矢量場為有旋矢量場,能夠激發(fā)有旋矢量場的源稱為旋渦源。電流是磁場的旋渦源。環(huán)流的概念矢量場對于閉合曲線C的環(huán)流定義為該矢量對閉合曲線C的線積分,即32如果矢量場的任意閉合回路的環(huán)流恒為零,稱該矢量場為無旋場82過點M作一微小曲面S,它的邊界曲線記為C,曲面的法線方向n與曲線的繞向成右手螺旋法則。當(dāng)S0時,極限稱為矢量場在點M處沿方向n的環(huán)流面密度。
矢量場的環(huán)流給出了矢量場與積分回路所圍曲面內(nèi)旋渦源的宏觀聯(lián)系。為了給出空間任意點矢量場與旋渦源的關(guān)系,引入矢量場的旋度。
特點:其值與點M處的方向n有關(guān)。2、矢量場的旋度()
(1)環(huán)流面密度33過點M作一微小曲面S,它的邊界曲線記83而
推導(dǎo)
的示意圖如圖所示。oyDz
DyCMzx1234計算的示意圖
直角坐標(biāo)系中、、的表達(dá)式34而推導(dǎo)的示意圖如圖所示。oyD84于是
同理可得故得概念:矢量場在M點處的旋度為一矢量,其數(shù)值為M點的環(huán)流面密度最大值,其方向為取得環(huán)量密度最大值時面積元的法線方向,即物理意義:旋渦源密度矢量。性質(zhì):(2)矢量場的旋度35于是同理可得故得概念:矢量場在M點處的旋度為一矢量,其85旋度的計算公式:直角坐標(biāo)系圓柱面坐標(biāo)系球面坐標(biāo)系36旋度的計算公式:直角坐標(biāo)系圓柱面坐標(biāo)系球面坐標(biāo)系86旋度的有關(guān)公式:矢量場的旋度的散度恒為零標(biāo)量場的梯度的旋度恒為零37旋度的有關(guān)公式:矢量場的旋度標(biāo)量場的梯度873、Stokes定理Stokes定理是閉合曲線積分與曲面積分之間的一個變換關(guān)系式,也在電磁理論中有廣泛的應(yīng)用。曲面的剖分方向相反大小相等結(jié)果抵消
從旋度的定義出發(fā),可以得到矢量場沿任意閉合曲線的環(huán)流等于矢量場的旋度在該閉合曲線所圍的曲面的通量,即383、Stokes定理Stoke884、散度和旋度的區(qū)別
394、散度和旋度的區(qū)別891、矢量場的源散度源:是標(biāo)量,產(chǎn)生的矢量場在包圍源的封閉面上的通量等于(或正比于)該封
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025玉石買賣合同標(biāo)準(zhǔn)版
- 2025文化長廊景觀改造合同書
- 宇觀商業(yè)策略探索之旅洞察太空經(jīng)濟(jì)的機(jī)遇
- 科技媒體融合引領(lǐng)內(nèi)容創(chuàng)新的未來趨勢
- 課題申報參考:考慮AI直播和政府補(bǔ)貼的電商供應(yīng)鏈決策研究
- 教育領(lǐng)域中的創(chuàng)新思維與商業(yè)創(chuàng)新
- 新時代下智慧農(nóng)場的技術(shù)與運(yùn)營模式研究
- 2024年彩妝化妝品項目資金需求報告代可行性研究報告
- 火災(zāi)應(yīng)急救援中的協(xié)同作戰(zhàn)策略探討
- 儀器儀表在智能養(yǎng)老中的應(yīng)用考核試卷
- 山東鐵投集團(tuán)招聘筆試沖刺題2025
- 真需求-打開商業(yè)世界的萬能鑰匙
- 2025年天津市政集團(tuán)公司招聘筆試參考題庫含答案解析
- GB/T 44953-2024雷電災(zāi)害調(diào)查技術(shù)規(guī)范
- 2024-2025學(xué)年度第一學(xué)期三年級語文寒假作業(yè)第三天
- 2024年列車員技能競賽理論考試題庫500題(含答案)
- 心律失常介入治療
- 《無人機(jī)測繪技術(shù)》項目3任務(wù)2無人機(jī)正射影像數(shù)據(jù)處理
- 6S精益實戰(zhàn)手冊
- 展會場館保潔管理服務(wù)方案
- 監(jiān)理從業(yè)水平培訓(xùn)課件
評論
0/150
提交評論