版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年湖南省長(zhǎng)沙市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
2.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
3.
4.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx5.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]
B.[-1,1]
C.[1,+∞)
D.(-∞,+∞)
6.
7.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
8.
9.二次積分等于()A.A.
B.
C.
D.
10.A.A.0B.1/2C.1D.∞11.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
12.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
13.
14.
15.
等于()A.A.
B.
C.
D.0
16.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
17.A.0B.1C.2D.4
18.
19.A.A.
B.
C.
D.
20.
21.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績(jī)效顯著,近來被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點(diǎn)調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點(diǎn)仍以技術(shù)工作為主,以自身為榜樣帶動(dòng)下級(jí)
C.以抓管理工作為主,同時(shí)參與部分技術(shù)工作,以增強(qiáng)與下級(jí)的溝通和了解
D.在抓好技術(shù)工作的同時(shí),做好管理工作
22.
23.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
24.
25.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
26.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在
27.A.1
B.0
C.2
D.
28.∫sin5xdx等于().
A.A.
B.
C.
D.
29.
30.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)31.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解32.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
33.
34.
35.A.A.
B.B.
C.C.
D.D.
36.
37.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
38.A.0B.1C.2D.不存在39.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
40.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
41.
42.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
43.
44.
45.
46.管理幅度是指一個(gè)主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。
A.4~8人B.10~15人C.15~20人D.10~20人47.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)
B.f(x)在點(diǎn)x0必定不可導(dǎo)
C.
D.
48.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
49.
50.
二、填空題(20題)51.
52.53.54.設(shè)z=tan(xy-x2),則=______.
55.
56.
57.
58.
59.
60.
61.62.過點(diǎn)M0(2,0,-1)且平行于的直線方程為______.63.64.65.設(shè)y=(1+x2)arctanx,則y=________。
66.設(shè)y=cosx,則y"=________。
67.微分方程y"-y'-2y=0的通解為______.
68.方程cosxsinydx+sinxcosydy=O的通解為______.
69.
70.
三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.73.求曲線在點(diǎn)(1,3)處的切線方程.74.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則75.76.將f(x)=e-2X展開為x的冪級(jí)數(shù).
77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
78.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.79.80.證明:81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
82.
83.
84.求微分方程的通解.85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
86.求微分方程y"-4y'+4y=e-2x的通解.
87.
88.
89.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.90.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)91.92.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
93.
94.
95.96.97.
98.
99.
100.五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.求曲線y=e-x、x=1,y軸與x軸所圍成圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
參考答案
1.D的值等于區(qū)域D的面積,D為邊長(zhǎng)為2的正方形面積為4,因此選D。
2.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
3.A
4.B
5.B
6.D解析:
7.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
8.A
9.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
10.A
11.C
12.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
可知應(yīng)選A.
13.C解析:
14.D
15.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有
故應(yīng)選D.
16.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。
17.A本題考查了二重積分的知識(shí)點(diǎn)。
18.D
19.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).
20.D
21.C
22.B
23.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
24.B
25.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
26.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
27.C
28.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
,可知應(yīng)選D.
29.C
30.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
31.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
32.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
33.A
34.D
35.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).
36.D解析:
37.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
38.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
39.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
40.A
41.D
42.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
43.A解析:
44.C
45.B
46.A解析:高層管理人員的管理幅度通常以4~8人較為合適。
47.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
48.D
49.C解析:
50.B
51.052.
53.
54.本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
z=tan(xy-x2),
55.00解析:
56.
57.π/4
58.22解析:
59.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
若利用極限公式
如果利用無窮大量與無窮小量關(guān)系,直接推導(dǎo),可得
60.
61.
62.
63.2本題考查了定積分的知識(shí)點(diǎn)。
64.65.因?yàn)閥=(1+x2)arctanx,所以y"=2xarctanx+(1+x2)。=2xarctanx+1。
66.-cosx67.y=C1e-x+C2e2x本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)微分方程的求解.
特征方程為r2-r-2=0,
特征根為r1=-1,r2=2,
微分方程的通解為y=C1e-x+C2ex.
68.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
69.1/2
70.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
71.
72.
73.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
74.由等價(jià)無窮小量的定義可知
75.
76.
77.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%78.函數(shù)的定義域?yàn)?/p>
注意
79.
80.
81.
82.
則
83.
84.
85.
86.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
87.由一階線性微分方程通解公式有
88.
89.由二重積分物理意義知
90.
列表:
說明
91.本題考查的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國(guó)際貨物買賣合同CIF術(shù)語
- 2024天津市勞動(dòng)合同范本
- 2024裝飾工程勞務(wù)分包標(biāo)準(zhǔn)合同
- 2024年度企業(yè)管理系統(tǒng)升級(jí)合同
- 2024年企業(yè)咨詢服務(wù)提供合同
- 2024年度安置房買賣合同中的交易過程監(jiān)督
- 2024企業(yè)間貸款合同范文
- 2024建材訂貨合同范文
- 2024年度安徽省某地行政中心建筑施工合同
- 2024年度廣告制作合同:某廣告公司對(duì)客戶的廣告制作及標(biāo)的廣告創(chuàng)意要求
- 2024年11月紹興市2025屆高三選考科目診斷性考試(一模) 化學(xué)試卷(含答案)
- 青藍(lán)工程師傅工作計(jì)劃(7篇)
- 2024年福建省漳州市臺(tái)商投資區(qū)招聘77人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2022年公務(wù)員國(guó)考《申論》真題(副省級(jí))及參考答案
- 中藥融資方案
- 六年級(jí)計(jì)算題 分?jǐn)?shù)混合運(yùn)算專項(xiàng)練習(xí)430題
- 2024年第四季度中國(guó)酒店市場(chǎng)景氣調(diào)查報(bào)告-浩華
- 2024年二級(jí)建造師繼續(xù)教育考核題及答案
- 安徽省鼎尖教育聯(lián)考2024-2025學(xué)年高二上學(xué)期開學(xué)考試物理
- 2021-2022學(xué)年統(tǒng)編版道德與法治五年級(jí)上冊(cè)全冊(cè)單元測(cè)試題及答案(每單元1套共6套)
- 中小學(xué)心理健康教育課程標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論