版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter3
DescriptiveStatistics:NumericalMethods
PartAMeasuresofLocationMeasuresofVariabilityx%MeasuresofLocationMeanMedianModePercentilesQuartilesCountingaverage:mean、harmonicmean、geometricmean;Positionaverage:median、mode、percentiles,quartiles。Example:ApartmentRents Givenbelowisasampleofmonthlyrentvalues($)forone-bedroomapartments.Thedataisasampleof70apartmentsinaparticularcity.Thedataarepresentedinascendingorder.
MeanThemeanofadatasetistheaverageofallthedatavalues.Ifthedataarefromasample,themeanisdenotedby
Ifthedataarefromapopulation,themeanisdenotedbym(mu).Example:ApartmentRentsMeanSTAT[e.g.]agefortenpersons:15,16,16,17,17,17,18,18,18,18。Findtheaverageage.STATAttention:(1)weight:theamounttobalancedegreeforf/f(2)calculationforthemeanofclasswidthseries:usethemidpointtosubstitutevariablex,andcalculateitwithformula.STATThemeanofratioAnalysisofingredientsformean:STATHarmonicMeana、definition:thereciprocalofmeanwhichthevariables’reciprocalshave.b、formula:Simpleharmonicmean:Weightedharmonicmean:Meanwhile,m=xfisweightSTAT[e.g.]theinformationforfourcorporationsbelongingtoonebureauasfollows,trytocalculatetheaverageplanaccomplishedpercentagefortheindustrybureau.
Weightedharmonicmean:(itcanbeusedwhenvariableshasdifferentweight)STAT1、Basicformula:mean=symbolgross/populationgrossThepreconditionforthemeanandharmonicmean:A、whenthedenominatorisknown,meancanbeusedincalculation;(numeratorisunknown)B、whenthenumeratorisknown,harmonicmeancanbeusedincalculation;(denominatorisunknown)2、Weightedharmonicmean:(itcanbeusedwhenvariableshasdifferentweight)HarmonicmeanisthetransformationofmeanSTATa、definition:nhypo-squareofnvariables’product.b、precondition:It’ssuitabletocomputetheaverageofratioorspeed.c、formula:d、notice:whenthereisazerooranegativevalueintheobservation,itisnotsuitabletousegeometricmeanforcalculation.e、ifusethesamedatatocalculatethearithmeticmean、harmonicmeanandgeometricmeanseparately,therelationwillshowasfollow:GeometricMeanMedianThemedianofadatasetisthevalueinthemiddlewhenthedataitemsarearrangedinascendingorder.Foranoddnumberofobservations,themedianisthemiddlevalue.Foranevennumberofobservations,themedianistheaverageofthetwomiddlevalues.MedianThemedianisthemeasureoflocationmostoftenreportedforannualincomeandpropertyvaluedata.Afewextremelylargeincomesorpropertyvaluescaninflatethemean.[e.g.]theagesofnineofficersinsectionoffice:24,25,25,26,26,27,28,29,55Sequence:A1,A2,A3,A4,A5,A6,A7,A8,A9Example:ApartmentRentsMedian Median=50thpercentile
i=(p/100)n=(50/100)70=35.5 Averagingthe35thand36thdatavalues: Median=(475+475)/2=475STATEx:median=180/2=theninetieth,soMeoughttotheageoftheninetiethSo:Me=18。whenmaterialisgrouped,anditformsintomonomialvariablesequence,middlepoint=f/2STAT(3)Thedatahasalreadygroupingandformintotypeofclassintervaloffluentsequence
(A)Listhelowerwardlimitofthemean,theUistheupwardlimit(B)Iistheclassintervalofmeaninplaceset(C)Sm-1isthesumofsmallerthaneachnumberoftimesofmedian(D)Sm+1isthesumoflargerthaneachnumberoftimesofmedian(E)fmisthetimesofmeaninplaceset
STAT[EX]lowerwardformula:
upwardformula:
AndSTATdeduce:
506070(L)80(U)90100
xy103060110150180(Sm-1)TheninetiethpersonMe=L+x=U-ySupposethatthevariableofmediangroupsisaveragedistribution,thentakethemethodsofinterpolationbyproportionalpartsSTAT3、Attentionoftheproblems:(1)Notaffectedbytheextremevalue,moresteadiness.
(2)Themediantakesvalueonlybearononeortwonumeralvaluein
neutralposition,makeuseofinformationinsufficiency,ignoreothersizeofdata,andisnotsuitforalgebraicoperation.ModeThemodeofadatasetisthevaluethatoccurswithgreatestfrequency.Thegreatestfrequencycanoccurattwoormoredifferentvalues.Ifthedatahaveexactlytwomodes,thedataarebimodal.Ifthedatahavemorethantwomodes,thedataaremultimodal.Example:ApartmentRentsMode
450occurredmostfrequently(7times) Mode=450STAT1、definition:Themodeisthedatavaluethatoccurswithgreatestfrequency。ExpressedbytheMo。A、20,15,18,20,20,22,20,23;n=8Mo=20B、20,20,15,19,19,20,19,25;n=8Mo=20Mo=19C、10,11,13,16,15,25,8,12;n=8,nomode2、calculation(1)Ifthedataisthemonomialnumbersequence。
Firstidentifythemodegroups
thenidentifymode:Mo=18STAT2)IfthedataistypesofclassintervalofnumbersequenceMakesuremodalclassfirst;Thenusethefollowformulatocalculate:Signmeaning:(A)Listhelowerlimitofmodalclass,Uistheupward;(B)Iistheclassintervalofmodalclass;(C)1=fm-fm-1,isthedifferenceoforderofmodalclassandandex-numberoforder
2=fm-fm+1,isthedifferenceoforderofmodalclassandheelnumberoforderSTATThecharacteristicsofmodetakesvalue(1)Advantage:notaffectedbytheextremevalue(2)Disadvantage:DidnotmakeuseofallinformationLackthesensitivityandisnotsuitableforthealgebraoperation
PercentilesApercentileprovidesinformationabouthowthedataarespreadovertheintervalfromthesmallestvaluetothelargestvalue.Admissiontestscoresforcollegesanduniversitiesarefrequentlyreportedintermsofpercentiles.Thepthpercentileofadatasetisavaluesuchthatatleastppercentoftheitemstakeonthisvalueorlessandatleast(100-p)percentoftheitemstakeonthisvalueormore.Arrangethedatainascendingorder.Computeindexi,thepositionofthepthpercentile.
i=(p/100)nIfiisnotaninteger,roundup.Thep
thpercentileisthevalueinthei
thposition.Ifiisaninteger,thep
thpercentileistheaverageofthevaluesinpositionsiandi
+1.PercentilesExample:ApartmentRents90thPercentile
i=(p/100)n=(90/100)70=63 Averagingthe63rdand64thdatavalues: 90thPercentile=(580+590)/2=585QuartilesQuartilesarespecificpercentilesFirstQuartile=25thPercentileSecondQuartile=50thPercentile=MedianThirdQuartile=75thPercentileExample:ApartmentRentsThirdQuartile
Thirdquartile=75thpercentile
i=(p/100)n=(75/100)70=52.5=53 Thirdquartile=525STATTherelationshipamountofMean、MedianandMode(a)Therelationshipofthem:1、quantitativerelations:(1)symmetricdistribution:Thispointallequal35。
STAT(2)BiaseddistributionA、Divergeright(positive):STATB、Divergeleft(negative):BusinessStatistics,AFirstCourse(4e)?2006Prentice-Hall,Inc.Chap3-35ShapeofaDistributionDescribeshowdataaredistributedMeasuresofshapeSymmetricorskewedMean=Median
Mean<Median
Median<MeanRight-SkewedLeft-SkewedSymmetricMeasuresofVariabilityItisoftendesirabletoconsidermeasuresofvariability(dispersion),aswellasmeasuresoflocation.Forexample,inchoosingsupplierAorsupplierBwemightconsidernotonlytheaveragedeliverytimeforeach,butalsothevariabilityindeliverytimeforeach.BusinessStatistics,AFirstCourse(4e)?2006Prentice-Hall,Inc.Chap3-37MeasuringvariationSmallstandarddeviationLargestandarddeviationSTATFunction:(1)Measurethesizeofmeanvaluerepresentativeness。(2)Reflectthedispersityofvariablevaluedistribution。(3)ReflecttheproportionalityandstabilityofdevelopingphenomenaMeasuresofVariabilityRangeInterquartileRangeA.DVarianceStandardDeviationCoefficientofVariationRangeTherangeofadatasetisthedifferencebetweenthelargestandsmallestdatavalues.Itisthesimplestmeasureofvariability.Itisverysensitivetothesmallestandlargestdatavalues.Example:ApartmentRentsRange
Range=largestvalue-smallestvalue Range=615-425=190InterquartileRangeTheinterquartilerangeofadatasetisthedifferencebetweenthethirdquartileandthefirstquartile.Itistherangeforthemiddle50%ofthedata.Itovercomesthesensitivitytoextremedatavalues.Example:ApartmentRentsInterquartileRange
3rdQuartile(Q3)=525 1stQuartile(Q1)=445 InterquartileRange=Q3-Q1=525-445=80STATA.D1、Definition:Theaveragedeviationofthevariableandthemean.2、Theformula:–5–2250522514STATExample:–5.61–2.611.394.395.612=11.222.615=13.051.398=11.224.393=13.1748.66VarianceThevarianceisameasureofvariabilitythatutilizesallthedata.Itisbasedonthedifferencebetweenthevalueofeachobservation(xi)andthemean(xforasample,mforapopulation).VarianceThevarianceistheaverageofthesquareddifferencesbetweeneachdatavalueandthemean.Ifthedatasetisasample,thevarianceisdenotedbys2.
Ifthedatasetisapopulation,thevarianceisdenotedby2.StandardDeviationThestandarddeviation
ofadatasetisthepositivesquarerootofthevariance.Itismeasuredinthesameunitsasthedata,makingitmoreeasilycomparable,thanthevariance,tothemean.Ifthedatasetisasample,thestandarddeviationisdenoteds.Ifthedatasetisapopulation,thestandarddeviationisdenoted(sigma).STATExample:Trytocalculatethevarianceandthestandarddeviationaboutthegradesofthese40studentsasfollowing:X5565758595Xf1105201200850380306-21.5-11.5-1.58.518.5462.25132.252.2572.25342.25924.5105836722.51369 4110S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教研成果成果轉化
- 裝修設計師的工作總結
- 房地產(chǎn)行業(yè)設計師工作總結
- 2024年爬山安全教案
- 2024年計算機應屆生簡歷
- 農田租賃協(xié)議書(2篇)
- 2024年苯噻草胺項目營銷方案
- 《贛州市國家稅務局》課件
- 烏魯木齊市實驗學校2023-2024學年高三上學期1月月考政治試題(解析版)
- 甘肅省部分學校2025屆高三上學期第一次聯(lián)考(期末)歷史試卷(含答案解析)
- 《蘇寧電器的內部控制與評價研究》18000字(論文)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之12:“6策劃-6.1應對風險和機遇的措施”(雷澤佳編制-2025B0)
- 《IT企業(yè)介紹》課件
- 2024年研究生考試考研思想政治理論(101)試卷及解答參考
- 年終獎發(fā)放通知范文
- 油田員工勞動合同范例
- Unit 5 Music Listening and Talking 說課稿-2023-2024學年高一英語人教版(2019)必修第二冊
- 車間主任個人年終總結
- 2024年甘肅省公務員錄用考試《行測》試題及答案解析
- 消防工程技術專業(yè)畢業(yè)實習報告范文
- 2024年高等教育法學類自考-00229證據(jù)法學考試近5年真題附答案
評論
0/150
提交評論