版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
導(dǎo)數(shù)練習(xí)題1.(本題滿分12分)已知函數(shù)f(x)ax3bx2(c3a2b)xd的圖象如圖所示.(I)求c,d的值;(II)若函數(shù)f(x)在x2處的切線方程為3xy110,求函數(shù)f(x)的剖析式;(III)在(II)的條件下,函數(shù)yf(x)與y1f(x)5xm3的圖象有三個(gè)不相同的交點(diǎn),求m的取值范圍.2.(本小題滿分12分)已知函數(shù)f(x)alnxax3(aR).(I)求函數(shù)f(x)的單調(diào)區(qū)間;(II)函數(shù)f(x)的圖象的在x4處切線的斜率為3,若函數(shù)1x3m]在區(qū)間(1,3)上不是單調(diào)函數(shù),求2g(x)x2[f'(x)m的取值范圍.323.(本小題滿分14分)已知函數(shù)f(x)x3ax2bxc的圖象經(jīng)過坐標(biāo)原點(diǎn),且在x1處獲取極大值.(I)求實(shí)數(shù)a的取值范圍;(II)若方程f(x)(2a3)2恰好有兩個(gè)不相同的根,求f(x)的剖析式;9(III)對(duì)于(II)中的函數(shù)f(x),對(duì)任意、R,求證:|f(2sin)f(2sin)|81.4.(本小題滿分12分)已知常數(shù)a0,e為自然對(duì)數(shù)的底數(shù),函數(shù)f(x)exx,g(x)x2alnx.I)寫出f(x)的單調(diào)遞加區(qū)間,并證明eaa;II)談?wù)摵瘮?shù)yg(x)在區(qū)間(1,ea)上零點(diǎn)的個(gè)數(shù).5.(本小題滿分14分)已知函數(shù)f(x)ln(x1)k(x1)1.I)當(dāng)k1時(shí),求函數(shù)f(x)的最大值;II)若函數(shù)f(x)沒有零點(diǎn),求實(shí)數(shù)k的取值范圍;6.(本小題滿分12分)已知x2是函數(shù)f(x)(x2ax2a3)ex的一個(gè)極值點(diǎn)(e2.718).I)求實(shí)數(shù)a的值;II)求函數(shù)f(x)在x[3,3]的最大值和最小值.27.(本小題滿分14分)已知函數(shù)f(x)x24x(2a)lnx,(aR,a0)I)當(dāng)a=18時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;II)求函數(shù)f(x)在區(qū)間[e,e2]上的最小值.8.(本小題滿分12分)已知函數(shù)f(x)x(x6)alnx在x(2,)上不擁有單調(diào)性....(I)求實(shí)數(shù)a的取值范圍;(II)若f(x)是f(x)的導(dǎo)函數(shù),設(shè)g(x)f(x)622,試證明:對(duì)任意兩個(gè)不38|x1x相等正數(shù)x1、x2,不等式|g(x1)g(x2)|x2|恒成立.279.(本小題滿分12分)已知函數(shù)f(x)1x2ax(a1)lnx,a1.2(I)談?wù)摵瘮?shù)f(x)的單調(diào)性;(II)證明:若a5,則對(duì)任意x1,x2(0,),x1x2f(x1)f(x2),有1.x1x210.(本小題滿分14分)已知函數(shù)f(x)1x2alnx,g(x)(a1)x,a1.2I)若函數(shù)f(x),g(x)在區(qū)間[1,3]上都是單調(diào)函數(shù)且它們的單調(diào)性相同,求實(shí)數(shù)a的取值范圍;(II)若a(1,e](e2.71828L),設(shè)F(x)f(x)g(x),求證:當(dāng)x1,x2[1,a]時(shí),不等式|F(x1)F(x2)|1成立.11.(本小題滿分12分)設(shè)曲線C:f(x)lnxex(e2.71828),f(x)表示f(x)導(dǎo)函數(shù).I)求函數(shù)f(x)的極值;II)對(duì)于曲線C上的不相同兩點(diǎn)A(x1,y1),B(x2,y2),x1x2,求證:存在唯一的x0(x1,x2),使直線AB的斜率等于f(x0).12.(本小題滿分14分)定義F(x,y)(1x)y,x,y(0,),(I)令函數(shù)f(x)F(3,log2(2xx24)),寫出函數(shù)f(x)的定義域;使(II)令函數(shù)g(x)F(1,log2(x3ax2bx1))的圖象為曲線,若存在實(shí)數(shù)bC得曲線C在x0(4x01)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;(III)當(dāng)x,yN*且xy時(shí),求證F(x,y)F(y,x).導(dǎo)數(shù)練習(xí)題答案1.(本題滿分12分)已知函數(shù)f(x)ax3bx2(c3a2b)xd的圖象如圖所示.(I)求c,d的值;(II)若函數(shù)f(x)在x2處的切線方程為3xy110,求函數(shù)f(x)的剖析式;(III)在(II)的條件下,函數(shù)yf(x)與y1f(x)5xm的圖象有三個(gè)不3同的交點(diǎn),求m的取值范圍.解:函數(shù)f(x)的導(dǎo)函數(shù)為f'(x)3ax22bxc3a2b(2分)(I)由圖可知函數(shù)f(x)的圖象過點(diǎn)(0,3),且f'(1)0得d3d3(4分)3a2bc3a2b0c0(II)依題意f'(2)3且f(2)5解得a1,b6所以f(x)x36x29x3(8分)(III)f(x)3x212x9.可轉(zhuǎn)變成:x36x29x3x24x35xm有三個(gè)不等實(shí)根,即:gxx37x28xm與x軸有三個(gè)交點(diǎn);gx3x214x83x2x4,+0-0+增極大值減極小值增g268m,g416m.(10分)327當(dāng)且僅當(dāng)g268m0且g416m0時(shí),有三個(gè)交點(diǎn),327故而,16m68為所求.(12分)272.(本小題滿分12分)已知函數(shù)f(x)alnxax3(aR).(I)求函數(shù)f(x)的單調(diào)區(qū)間;(II)函數(shù)f(x)的圖象的在x4處切線的斜率為3,若函數(shù)1x3m]在區(qū)間(1,3)上不是單調(diào)函數(shù),求2g(x)x2[f'(x)m的取值范圍.32解:(I)f'(x)a(1x)(x0)(2分)x當(dāng)a0時(shí),f(x)的單調(diào)增區(qū)間為0,1,減區(qū)間為1,當(dāng)a0時(shí),f(x)的單調(diào)增區(qū)間為1,,減區(qū)間為0,1;當(dāng)a=1時(shí),f(x)不是單調(diào)函數(shù)(5分)(II)f'(4)3a32,f(x)2lnx2x34得a2g(x)1x3(m2)x22x,g'(x)x2(m4)x2(6分)32g'(1)0,g'(3)0.
m3,19,3)(8分)m19,(10分)m((12分)333.(本小題滿分14分)已知函數(shù)f(x)x3ax2bxc的圖象經(jīng)過坐標(biāo)原點(diǎn),且在x1處獲取極大值.(I)求實(shí)數(shù)a的取值范圍;(II)若方程f(x)(2a3)2恰好有兩個(gè)不相同的根,求f(x)的剖析式;9,對(duì)任意,求證:.(III)對(duì)于(II)中的函數(shù)f(x)、R)f(2sin)|81|f(2sin解:(I)f(0)0c0,f(x)3x22axb,f(1)0b2a3由f(x)0x1或x2a3,由于當(dāng)x1時(shí)獲取極大值,3所以2a31a3,所以a的取值范圍是:(,3);3(4分)(II)由下表:+0-0-極大遞加值遞減極小值遞加a2依題意得:a6(2a3)2(2a3)2,解得:a9279所以函數(shù)f(x)的剖析式是:f(x)x39x215x(10分)(III)對(duì)任意的實(shí)數(shù),都有22sin2,22sin2,在區(qū)間[-2,2]有:f(2)8363074,f(1)7,f(2)836302函數(shù)f(x)在區(qū)間[2,2]上的最大值與最小值的差等于81,所以|f(2sin)f(2sin)|81.(14分)4.(本小題滿分12分)已知常數(shù)a0,e為自然對(duì)數(shù)的底數(shù),函數(shù)f(x)exx,g(x)x2alnx.I)寫出f(x)的單調(diào)遞加區(qū)間,并證明eaa;II)談?wù)摵瘮?shù)yg(x)在區(qū)間(1,ea)上零點(diǎn)的個(gè)數(shù).解:(I)fxex10,得f(x)的單調(diào)遞加區(qū)間是(0,),(2分)( )∵a0,∴f(a)f(0)1,∴eaa1a,即eaa.(4分)2(x2a2a(II)g(x)2xa)(x)2a,列表22,由g(x)0,得xxx2-0+單調(diào)遞減極小值單調(diào)遞加當(dāng)x2a時(shí),函數(shù)yg(x)取極小值g(2a)a(1lna),無極大值.2222(6分)由(I)eae2aeaa,∴ea2aa,∵a,∴e2aa222g(1)10,g(ea)e2aa2(eaa)(eaa)0(8分)(i)當(dāng)2a1,即0a2時(shí),函數(shù)yg(x)在區(qū)間(1,ea)不存在零點(diǎn)2(ii)當(dāng)2a1,即a2時(shí)2若a(1lna)0,即2a2e時(shí),函數(shù)yg(x)在區(qū)間(1,ea)不存在零點(diǎn)22若a(1lna)0,即a2e時(shí),函數(shù)yg(x)在區(qū)間(1,ea)存在一個(gè)零點(diǎn)xe;22若a(1lna)0,即a2e時(shí),函數(shù)yg(x)在區(qū)間(1,ea)存在兩個(gè)零點(diǎn);22綜上所述,yg(x)在(1,ea)上,我們有結(jié)論:當(dāng)0a2e時(shí),函數(shù)f(x)無零點(diǎn);當(dāng)a2e時(shí),函數(shù)f(x)有一個(gè)零點(diǎn);當(dāng)a2e時(shí),函數(shù)f(x)有兩個(gè)零點(diǎn).(12分)5.(本小題滿分14分)已知函數(shù)f(x)ln(x1)k(x1)1.I)當(dāng)k1時(shí),求函數(shù)f(x)的最大值;II)若函數(shù)f(x)沒有零點(diǎn),求實(shí)數(shù)k的取值范圍;解:(I)當(dāng)k1時(shí),f(x)2xx1f(x)定義域?yàn)椋?,+),令f(x)0,得x2,(2分)∵當(dāng)x(1,2)時(shí),f(x)0,當(dāng)x(2,)時(shí),f(x)0,∴f(x)在(1,2)內(nèi)是增函數(shù),在(2,)上是減函數(shù)∴當(dāng)x2時(shí),f(x)取最大值f(2)0(4IIk0時(shí)yln(x1)yk(x1)1f(x)811kkxk(x1k)k0時(shí)kk6f(x)x1xx11f(x)0,得xk1x(1,k1)時(shí),f(x)0,x(11,)時(shí),f(x)01kk1kf(x)在(1,1)在[1,)kkf(x)f(11)lnkkf(x)lnk0k1f(x)kk(1,)10612x2f(x)(x2ax2a3)exe2.718IaIIf(x)x[3,3]If(x)2(x2ax2a3)exf(x)(2xa)ex(x2ax2a3)ex[x2(2a)xa3]ex4x2f(x)f(2)0(a5)e20a56IIf(x)(x2)(x1)ex0f(x)(,1)(2,)f(x)0f(x)(1,2)f(2)e2f(x)x[3,3]82322323373f(3)3e37e13f()ef(3)ef( )44e(4ee7)0,f(3)f( )2422f(x)x[3,3]f(3)e3122714f(x)x24x(2a)lnx,(aR,a0)Ia=18f(x)IIf(x)[e,e2]f(x)x24x16lnxf'(x)2x4162(x2)(x4)2xxf'(x)0(x2)(x4)0x4x2注意到x0,所以函數(shù)f(x)的單調(diào)遞加區(qū)間是(4,+∞)由f'(x)0得(x2)(x4)0,解得-2<x<4,注意到x0,所以函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,4].綜上所述,函數(shù)f(x)的單調(diào)增區(qū)間是(4,+∞),單調(diào)減區(qū)間是(0,4]6分(Ⅱ)在x[e,e2]時(shí),f(x)x24x(2a)lnx所以f'(x)2x42a2x24x2a,xx設(shè)g(x)2x24x2a當(dāng)a0時(shí),有△=16+4×2(2a)8a0,此時(shí)g(x)0,所以f'(x)0,f(x)在[e,e2]上單調(diào)遞加,所以f(x)minf(e)e24e2a8分當(dāng)a0時(shí),△=1642(2a)8a0,令f'(x)0,即2x24x2a0,解得x12a或x12a;22令f'(x)0,即2x24x2a0,解得12ax12a.22①若12a≥e2,即a≥2(e21)2時(shí),2f(x)在區(qū)間[e,e2]單調(diào)遞減,所以f(x)minf(e2)e44e242a.②若e12ae2,即2(e1)2a2(e21)2時(shí)間,2f(x)在區(qū)間[e,12a]上單調(diào)遞減,在區(qū)間[12a,e2]上單調(diào)遞加,22所以f(x)minf(12a)a2a3(2a)ln(12a).222③若12ae(e1)2時(shí),f(x)在區(qū)間[e,e2]單調(diào)遞加,2≤,即0a≤2所以f(x)minf(e)e24e2a綜上所述,當(dāng)a≥2(e21)2時(shí),f(x)mina44e242a;當(dāng)2(e1)2a2(e21)2時(shí),f(x)mina2a3(2a)ln(12a);22當(dāng)a2(e1)2時(shí),f(x)mine24e2a14分≤8.(本小題滿分12分)已知函數(shù)f(x)x(x6)alnx在x(2,)上不擁有單調(diào)性....(I)求實(shí)數(shù)a的取值范圍;(II)若f(x)是f(x)的導(dǎo)函數(shù),設(shè)g(x)f(x)62,試證明:對(duì)任意兩個(gè)不x2相等正數(shù)x1、x2,不等式|g(x1)g(x2)|38|x1x2|恒成立.27If(x)2x6a2x26xa2xxf(x)x(2,)x(2,)f(x)0y2x26xax(2,)4y2x26xax3y22262a02aIIIg(x)2x
(,4)622xx1g(x)2a20)f(x)x262xxx2(xa4g(x)2a42442x34x48x2x3x2x3x3h(x)2448124(2x3)x2x3h(x)x3x4x4333h(x)38h(x)(0,)(,)x22227g(x)38(g(x)38x)0yg(x)38x272727x1、x2x1x2g(x2)38x2g(x1)38x12727g(x2)g(x1)38(x2x1)x2x10g(x1)g(x2)3827x1x227g(x1)g(x2)38|g(x1)g(x2)|38|x1x2|12x1x227272M(x1,g(x1))N(x2,g(x2))yg(x)g(x1)g(x2)22(x1x2)aQx1x22x1x2a4x1x2x12x22x1x22(x1x2)a(4a(4482x12x22x1x2x1x2)3x1x22x1x2)3x1x22t1,t0kMNu(t)24t34t2u(t)4t(3t2)x1x2u(t)0t2,u(t)00t2,33u(t)(0,2)(2,)33u(t)t238u(t)38g(x1)g(x2)3832727x1x227|g(x1)g(x2)|3812|x1x2|27912已知函數(shù)f(x)1x2ax(a1)lnx,a1.2(I)談?wù)摵瘮?shù)f(x)的單調(diào)性;(II)證明:若a5,則對(duì)任意x1,x2(0,),x1x2f(x1)f(x2)1.,有x2x1(1)f(x)的定義域?yàn)?0,),f'(x)xaa1x2axa1(x1)(x1a)xxx2分(i)若a11,即a2,則f'(x)(x1)2.故f(x)在(0,)單調(diào)增加.(ii)若a11,而ax1,故1a2,則當(dāng)x(a1,1)時(shí),f'(x)0.當(dāng)x(0,a1)及x(1,)時(shí),f'(x)0,故f(x)在(a1,1)單調(diào)減少,在(0,a-1),(1,)單調(diào)增加.(iii)若a11,即a2,同理可得f(x)在(1,a1)單調(diào)減少,在(0,1),(a1,)單調(diào)增加.(II)考慮函數(shù)g(x)f(x)x1x2ax(a1)lnxx.2由g'(x)x(a1)a12xa1(a1)1(a11)2.xx由于aa5,故g'(x)0,即g(x)在(0,)單調(diào)增加,從而當(dāng)x1x20時(shí)有故f(x1)f(x2)1,當(dāng)0x1x2時(shí),有f(x1)f(x2)f(x2)f(x1)1x1x2x1x2x2x110.(本小題滿分14分)已知函數(shù)f(x)1x2alnx,g(x)(a1)x,a1.2I)若函數(shù)f(x),g(x)在區(qū)間[1,3]上都是單調(diào)函數(shù)且它們的單調(diào)性相同,求實(shí)數(shù)a的取值范圍;(II)若a(1,e](e2.71828L),設(shè)F(x)f(x)g(x),求證:當(dāng)x1,x2[1,a]時(shí),不等式|F(x1)F(x2)|1成立.解:(I)f(x)xa,g(x)a1,(2x分)∵函數(shù)f(x),g(x)在區(qū)間[1,3]上都是單調(diào)函數(shù)且它們的單調(diào)性相同,∴當(dāng)x[1,3]時(shí),f(a1)(x2a)恒成立,(4分)(x)g(x)0x即(a1)(x2a)0恒成立,∴∵
a1在x[1,3]時(shí)恒成立,或a1在x[1,3]時(shí)恒成立,ax2ax29x1,∴a1或a9(6分)(II)F(x)1x2alnx,(a1)x,F(xiàn)(x)xa(a1)(xa)(x1)2xx∵F(x)定義域是(0,),a(1,e],即a1∴F(x)在(0,1)是增函數(shù),在(1,a)實(shí)質(zhì)減函數(shù),在(a,)是增函數(shù)∴當(dāng)x1時(shí),F(xiàn)(x)取極大值MF(1)a1,12當(dāng)xa時(shí),F(xiàn)(x)取極小值mF(a)alnaa2a,(8分)2x,x2[1,a],∴12)||Mm|Mm(10∵1|F(x)F(x分)設(shè)G(a)Mm1a2alna1,則G(a)alna1,22∴[G(a)]11,∵a(1,e],∴[G(a)]0a∴G(a)alna1在a(1,e]是增函數(shù),∴G(a)G(1)0∴G(a)1a2alna1在a(1,e]也是增函數(shù)(1222分)∴G(a)G(e),即G(a)1e2e1(e1)21,222而1e2e1(e1)21(31)211,∴G(a)Mm12222∴當(dāng)x1,x2[1,a]時(shí),不等式|F(x1)F(x2)|1成立.(14分)11.(本小題滿分12分)設(shè)曲線C:f(x)lnxex(e2.71828),f(x)表示f(x)(I)求函數(shù)f(x)的極值;(II)對(duì)于曲線C上的不相同兩點(diǎn)A(x1,y1),B(x2,y2),x1x2x0(x,x),使直線AB的斜率等于f(x).的120
導(dǎo)函數(shù).,求證:存在唯一1解:(I)f(x)x當(dāng)x變化時(shí),
1ex1e0,得xxef(x)與f(x)變化情況以下表:+0-單調(diào)遞加極大值單調(diào)遞減∴當(dāng)x1時(shí),f(x)獲取極大值f(1)2,沒有極小值;(4ee分)(II)(方法1)∵f(x0)kAB,∴1elnx2lnx1e(x2x1),∴x2x1lnx20x0x2x1x0x1即x0lnx2(xx)x121g(x1)x1lnx2(x2x1∵x1x2,∴g(x1)g(x)xlnx2(x222x1∵x1x2,∴g(x2)
0,設(shè)g(x)xlnx2x1),g(x1)x1x1lnx2/x1g(x2)x2lnx2(x2x2x1),g(x2)/lnx2x2x1g(x1)x1lnx1(x1x1
(x2x1)0,g(x1)是x1的增函數(shù),x2)0;0,g(x2)是x2的增函數(shù),x1)0,∴函數(shù)g(x)xlnx2(x2x1)在(x1,x2)內(nèi)有零點(diǎn)x0,(10x1分)又∵
x21,lnx20,函數(shù)g(x)xlnx2(x2x1)在(x1,x2)是增函數(shù),x1x1x1∴函數(shù)g(x)x2x1lnx2在(x1,x2)內(nèi)有唯一零點(diǎn)x0,命題成立(12xx1分)(方法2)∵f(x0)kAB,∴1elnx2lnx1e(x2x1),x0x2x1即x0lnx2x0lnx1x1x20,x0(x1,x2),且x0唯一設(shè)g(x)xlnx2xlnx1x1x2,則g(x1)x1lnx2x1lnx1x1x2,再設(shè)h(x)xlnx2xlnxxx2,0xx2,∴h(x)lnx2lnx0∴h(x)xl
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三體讀書筆記
- 簡(jiǎn)歷的自我評(píng)價(jià)(合集15篇)
- 售后客服工作總結(jié)合集15篇
- xxx生態(tài)養(yǎng)豬場(chǎng)建設(shè)產(chǎn)業(yè)化項(xiàng)目商業(yè)計(jì)劃書
- 南京某煤氣站鋼結(jié)構(gòu)氣柜施工組織設(shè)計(jì)
- 房地產(chǎn)銷售個(gè)人季度工作總結(jié)(合集六篇)
- 七年級(jí)人教版復(fù)習(xí)提綱
- 《職場(chǎng)溝通》電子教案 項(xiàng)目十 商務(wù)宴請(qǐng)溝通(4課時(shí))
- 2025年硅力敏傳感器項(xiàng)目發(fā)展計(jì)劃
- 門面房出租合同范文
- 雙塊式無砟軌道道床板裂紋成因分析應(yīng)對(duì)措施
- FZ∕T 62044-2021 抗菌清潔巾
- 國(guó)家電網(wǎng)有限公司十八項(xiàng)電網(wǎng)重大反事故措施(修訂版)
- 凈水廠課程設(shè)計(jì)
- 全級(jí)老年大學(xué)星級(jí)學(xué)校達(dá)標(biāo)評(píng)價(jià)細(xì)則
- 模具維護(hù)保養(yǎng)PPT課件
- 《新媒體文案寫作》試卷4
- 【模板】OTS認(rèn)可表格
- 2021國(guó)家開放大學(xué)電大本科《流行病學(xué)》期末試題及答案
- 中國(guó)銀行_境外匯款申請(qǐng)表模板(練手)
- 中班數(shù)學(xué)活動(dòng)《圖圖家請(qǐng)客》教案
評(píng)論
0/150
提交評(píng)論