![2022年內(nèi)蒙古自治區(qū)呼和浩特市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)](http://file4.renrendoc.com/view/7b832e32904572ca989424dbe9337402/7b832e32904572ca989424dbe93374021.gif)
![2022年內(nèi)蒙古自治區(qū)呼和浩特市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)](http://file4.renrendoc.com/view/7b832e32904572ca989424dbe9337402/7b832e32904572ca989424dbe93374022.gif)
![2022年內(nèi)蒙古自治區(qū)呼和浩特市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)](http://file4.renrendoc.com/view/7b832e32904572ca989424dbe9337402/7b832e32904572ca989424dbe93374023.gif)
![2022年內(nèi)蒙古自治區(qū)呼和浩特市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)](http://file4.renrendoc.com/view/7b832e32904572ca989424dbe9337402/7b832e32904572ca989424dbe93374024.gif)
![2022年內(nèi)蒙古自治區(qū)呼和浩特市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)](http://file4.renrendoc.com/view/7b832e32904572ca989424dbe9337402/7b832e32904572ca989424dbe93374025.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年內(nèi)蒙古自治區(qū)呼和浩特市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.()。A.充分必要條件B.充分非必要條件C.必要非充分條件D.既非充分也非必要條件
3.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
4.
5.
6.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
7.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
8.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
9.
10.A.A.π/4
B.π/2
C.π
D.2π
11.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線(xiàn)的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
12.方程x2+2y2-z2=0表示的二次曲面是()
A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面
13.下列函數(shù)在指定區(qū)間上滿(mǎn)足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
14.A.3x2+C
B.
C.x3+C
D.
15.A.A.yxy-1
B.yxy
C.xylnx
D.xylny
16.
17.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
18.
19.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無(wú)關(guān)()。
A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
20.
21.
22.設(shè)y1,y2為二階線(xiàn)性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
23.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
24.
25.
26.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
27.
28.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
29.
30.曲線(xiàn)y=lnx-2在點(diǎn)(e,-1)的切線(xiàn)方程為()A.A.
B.
C.
D.
31.設(shè)Y=e-3x,則dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
32.設(shè)y=x2-e2,則y=
A.2x-2e
B.2x-e2
C.2x-e
D.2x
33.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
34.A.A.-sinx
B.cosx
C.
D.
35.
36.()。A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
37.
38.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于
A.eB.1C.1+e2
D.ln239.A.A.較高階的無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階但不等價(jià)無(wú)窮小量D.較低階的無(wú)窮小量
40.
41.
42.
43.若,則下列命題中正確的有()。A.
B.
C.
D.
44.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
45.以下結(jié)論正確的是().
A.
B.
C.
D.
46.
47.
A.
B.
C.
D.
48.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
49.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)50.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
二、填空題(20題)51.52.
53.過(guò)點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線(xiàn)方程為_(kāi)________。
54.55.
56.
57.
58.設(shè)=3,則a=________。
59.60.
61.
62.
63.
64.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
65.66.求微分方程y"-y'-2y=0的通解。
67.
68.
69.微分方程y+9y=0的通解為_(kāi)_______.
70.
三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.73.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.75.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
76.77.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).
79.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
80.
81.證明:82.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).83.
84.求微分方程y"-4y'+4y=e-2x的通解.
85.
86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.87.
88.
89.求微分方程的通解.90.
四、解答題(10題)91.
92.
93.
94.設(shè)y=xcosx,求y'.
95.
96.
97.
98.
99.設(shè)y=3x+lnx,求y'.
100.設(shè)函數(shù)y=xsinx,求y'.
五、高等數(shù)學(xué)(0題)101.求極限
六、解答題(0題)102.
參考答案
1.C解析:
2.C
3.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
4.A
5.C
6.D
7.D由拉格朗日定理
8.A由于
可知應(yīng)選A.
9.A
10.B
11.C
12.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。
13.C
14.B
15.A
16.D解析:
17.B
18.D
19.A
20.C
21.C
22.B如果y1,y2這兩個(gè)特解是線(xiàn)性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線(xiàn)性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
23.D
24.B
25.C
26.B
27.B
28.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
29.A
30.D
31.C
32.D
33.A
34.C本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
35.A
36.D
37.C
38.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).
因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.
39.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
40.A
41.D
42.D
43.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
44.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
45.C
46.C
47.D
故選D.
48.DA,∫1+∞xdx==∞發(fā)散;
49.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.
50.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。51.2.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
能利用洛必達(dá)法則求解.
如果計(jì)算極限,應(yīng)該先判定其類(lèi)型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):
若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.
若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.
檢查是否滿(mǎn)足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.
52.
53.
54.
本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
55.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),
56.11解析:
57.eab
58.
59.
60.
61.22解析:62.1/6
63.1/61/6解析:
64.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
65.
66.
67.
解析:
68.
69.
本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.
70.(-24)(-2,4)解析:71.由等價(jià)無(wú)窮小量的定義可知
72.
73.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
74.函數(shù)的定義域?yàn)?/p>
注意
75.
76.
77.
78.
列表:
說(shuō)明
79.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%80.由一階線(xiàn)性微分方程通解公式有
81.
82.
83.
84.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
85.
86.由二重積分物理意義知
87.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)工商銀行補(bǔ)償貿(mào)易借款合同(6篇)
- 2024酒店客房領(lǐng)班年終總結(jié)(7篇)
- 聘用合同模板(30篇)
- 2024年學(xué)校開(kāi)展防災(zāi)減災(zāi)工作總結(jié)(9篇)
- 2024-2025學(xué)年第2課西方國(guó)家古代和近代政治制度的演變-勤徑學(xué)升高中歷史選擇性必修1同步練測(cè)(統(tǒng)編版2019)
- 2025年專(zhuān)利申請(qǐng)出售協(xié)議
- 2025年化工市場(chǎng)代理購(gòu)銷(xiāo)居間協(xié)議書(shū)
- 2025年醫(yī)療機(jī)構(gòu)內(nèi)科承包業(yè)務(wù)協(xié)議
- 2025年授權(quán)代理合作合同標(biāo)準(zhǔn)版本
- 2025年電子線(xiàn)圈設(shè)備項(xiàng)目申請(qǐng)報(bào)告模板
- 2025年電力鐵塔市場(chǎng)分析現(xiàn)狀
- GB 12158-2024防止靜電事故通用要求
- 山東省濱州市2024-2025學(xué)年高二上學(xué)期期末地理試題( 含答案)
- 體育老師籃球說(shuō)課
- 化學(xué)-江蘇省蘇州市2024-2025學(xué)年2025屆高三第一學(xué)期學(xué)業(yè)期末質(zhì)量陽(yáng)光指標(biāo)調(diào)研卷試題和答案
- 蛋雞生產(chǎn)飼養(yǎng)養(yǎng)殖培訓(xùn)課件
- 運(yùn)用PDCA降低住院患者跌倒-墜床發(fā)生率
- 海底撈員工手冊(cè)
- 2024CSCO小細(xì)胞肺癌診療指南解讀
- 立春氣象與生活影響模板
- 中國(guó)服裝零售行業(yè)發(fā)展環(huán)境、市場(chǎng)運(yùn)行格局及前景研究報(bào)告-智研咨詢(xún)(2025版)
評(píng)論
0/150
提交評(píng)論