版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省清遠(yuǎn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.
()A.x2
B.2x2
C.xD.2x
4.A.e2
B.e-2
C.1D.0
5.
6.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個(gè)實(shí)根B.兩個(gè)實(shí)根C.三個(gè)實(shí)根D.無(wú)實(shí)根
7.A.
B.
C.
D.
8.下列關(guān)系正確的是()。A.
B.
C.
D.
9.
10.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.
B.
C.
D.
11.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
12.
13.控制工作的實(shí)質(zhì)是()
A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)
14.
15.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
16.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
17.
18.
19.A.2x
B.3+2x
C.3
D.x2
20.
二、填空題(20題)21.
22.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.
23.
24.
25.設(shè)y=sin(2+x),則dy=.
26.
27.
28.
29.
30.曲線(xiàn)f(x)=x/x+2的鉛直漸近線(xiàn)方程為_(kāi)_________。
31.
32.
33.
34.
35.
36.
37.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為_(kāi)_________.
38.
39.
40.
三、計(jì)算題(20題)41.證明:
42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
44.
45.
46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
47.求微分方程的通解.
48.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.
52.
53.
54.
55.
56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).
57.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
58.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.
59.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
63.若y=y(x)由方程y=x2+y2,求dy。
64.
65.
66.
67.求曲線(xiàn)y=e-x、x=1,y軸與x軸所圍成圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
68.設(shè)
69.證明:ex>1+x(x>0)
70.求微分方程y"-y'-2y=3ex的通解.
五、高等數(shù)學(xué)(0題)71.
的極大值是_________;極小值是________。
六、解答題(0題)72.
參考答案
1.A
2.D
3.A
4.A
5.A
6.B
7.B
8.B由不定積分的性質(zhì)可知,故選B.
9.A解析:
10.B
11.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
12.D解析:
13.A解析:控制工作的實(shí)質(zhì)是糾正偏差。
14.D
15.D
16.D由拉格朗日定理
17.B
18.A
19.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.
20.B
21.3
22.3
23.
24.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項(xiàng)為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
25.cos(2+x)dx
這類(lèi)問(wèn)題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
26.1/2
27.5/2
28.2.
本題考查的知識(shí)點(diǎn)為二次積分的計(jì)算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知
29.
30.x=-2
31.
32.
解析:
33.11解析:
34.0
35.
36.0<k≤10<k≤1解析:
37.[-1,1
38.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:
39.
40.31/16;2本題考查了函數(shù)的最大、最小值的知識(shí)點(diǎn).
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.
41.
42.函數(shù)的定義域?yàn)?/p>
注意
43.
44.
則
45.由一階線(xiàn)性微分方程通解公式有
46.由等價(jià)無(wú)窮小量的定義可知
47.
48.
49.由二重積分物理意義知
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
51.
52.
53.
54.
55.
56.
列表:
說(shuō)明
57.
58.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
59.
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.
63.
64.
65.
66.本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求未定型極限.
67.
68.
69.
70.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=Aex.代入原方程可得
原方程的通解為
本題考查的知識(shí)點(diǎn)為求解二階線(xiàn)性常系數(shù)非齊次微分方程.
由二階線(xiàn)性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)療病例管理協(xié)議
- 2025年度美發(fā)店客戶(hù)滿(mǎn)意度調(diào)查與服務(wù)提升合同8篇
- 2025年食堂檔口租賃及市場(chǎng)營(yíng)銷(xiāo)合作合同范本3篇
- 2024門(mén)店超市經(jīng)營(yíng)管理承包合同3篇
- 2025年度綠色建材采購(gòu)與施工一體化項(xiàng)目承包合同4篇
- 2025年度智能家用空調(diào)安裝與維護(hù)服務(wù)協(xié)議書(shū)
- 2025年度模具制造設(shè)備租賃及節(jié)能改造合同4篇
- 二零二五年度版黃金首飾等抵押交易合同
- 2025年度綠色有機(jī)糧食購(gòu)銷(xiāo)合作經(jīng)營(yíng)協(xié)議
- 2025年度風(fēng)力發(fā)電樁基施工勞務(wù)分包驗(yàn)收標(biāo)準(zhǔn)合同
- 電纜擠塑操作手冊(cè)
- 浙江寧波鄞州區(qū)市級(jí)名校2025屆中考生物全真模擬試卷含解析
- IATF16949基礎(chǔ)知識(shí)培訓(xùn)教材
- 【MOOC】大學(xué)生創(chuàng)新創(chuàng)業(yè)知能訓(xùn)練與指導(dǎo)-西北農(nóng)林科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 勞務(wù)派遣公司員工考核方案
- 基礎(chǔ)生態(tài)學(xué)-7種內(nèi)種間關(guān)系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術(shù)》課件 第3講 阻燃基本理論
- 2024-2030年中國(guó)黃鱔市市場(chǎng)供需現(xiàn)狀與營(yíng)銷(xiāo)渠道分析報(bào)告
- 新人教版九年級(jí)化學(xué)第三單元復(fù)習(xí)課件
- 江蘇省南京鼓樓區(qū)2024年中考聯(lián)考英語(yǔ)試題含答案
評(píng)論
0/150
提交評(píng)論