2022屆江蘇省鹽城市鹽都區(qū)時楊中學高三最后一卷數(shù)學試卷含解析_第1頁
2022屆江蘇省鹽城市鹽都區(qū)時楊中學高三最后一卷數(shù)學試卷含解析_第2頁
2022屆江蘇省鹽城市鹽都區(qū)時楊中學高三最后一卷數(shù)學試卷含解析_第3頁
2022屆江蘇省鹽城市鹽都區(qū)時楊中學高三最后一卷數(shù)學試卷含解析_第4頁
2022屆江蘇省鹽城市鹽都區(qū)時楊中學高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.2.對于函數(shù),定義滿足的實數(shù)為的不動點,設,其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.3.設,,,則()A. B. C. D.4.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形5.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.6.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.37.二項式的展開式中,常數(shù)項為()A. B.80 C. D.1608.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.9.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.10.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}11.若復數(shù)滿足,復數(shù)的共軛復數(shù)是,則()A.1 B.0 C. D.12.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y>0,且,則x+y的最小值為_____.14.正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.15.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.16.已知,則_____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.18.(12分)已知函數(shù),函數(shù)在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對于函數(shù)圖象上的不同兩點,,如果在函數(shù)圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.19.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.20.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.21.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)22.(10分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

設雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關系,進而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點位置,屬于中檔題.2.C【解析】

根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當時,,則在內(nèi)單調(diào)遞增;當時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應用,由導數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應用,屬于中檔題.3.A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎題.4.B【解析】

化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數(shù)的運算性質(zhì)的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.5.C【解析】

由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.6.A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結(jié)果,屬于簡單題.7.A【解析】

求出二項式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.8.B【解析】

根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉(zhuǎn)化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結(jié)果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.9.C【解析】

畫出圖形,以為基底將向量進行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.10.B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.11.C【解析】

根據(jù)復數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數(shù)代數(shù)形式的運算法則,考查共軛復數(shù)的概念,屬于基礎題.12.C【解析】

先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構(gòu)造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調(diào)遞增,且,所以當時,;當時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉(zhuǎn)化思想和運算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當且僅當時取等號,此時x=4,y=2,取得最小值1.故答案為:1【點睛】此題考查利用均值不等式求解最值,關鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.14.【解析】

不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運算求解的能力,屬于難題,15.【解析】

設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.16.【解析】

由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關系式與和角的正切公式。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;(2)由(1)知,,則,,兩兩互相垂直,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,設,0,,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值.【詳解】(1)證明:因為四邊形是等腰梯形,,,所以.又,所以,因此,,又,且,,平面,所以平面.(2)取的中點,連接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以為二面角的平面角.在等腰三角形中,由于,因此,又,因為,所以,所以以為軸、為軸、為軸建立空間直角坐標系,則,,,,設平面的法向量為所以,即,令,則,,則平面的法向量,,設直線與平面所成角為,則【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓練了利用空間向量求解空間角,屬于中檔題.18.(1),單調(diào)性見解析;(2)不存在,理由見解析【解析】

(1)由題意得,即可得;求出函數(shù)的導數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構(gòu)造函數(shù)(),求導后證明即可得解.【詳解】(1)由題可得函數(shù)的定義域為且,由,整理得..(?。┊敃r,易知,,時.故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當,即時,當時,;當時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當時,在上單調(diào)遞增,在單調(diào)遞減.當時,在及上單調(diào)遞增;在上單調(diào)遞減.當時,在上遞增.當時,在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設滿足條件的、存在,不妨設,且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點睛】本題考查了導數(shù)的應用,考查了計算能力和轉(zhuǎn)化化歸思想,屬于中檔題.19.(1);(2)證明見解析;(3)是,理由見解析.【解析】

(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設點,根據(jù)導數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標,利用向量的數(shù)量積得出,則問題得以證明;(3)設直線,直線,、、,推導出以及,求出和,通過化簡計算可得出為定值,進而可得出結(jié)論.【詳解】(1)由知其焦點的坐標為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關于軸對稱,且的方程為,由此易知與的公共點的坐標為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)設直線,直線,、、,則,設向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【點睛】本題考查了圓錐曲線的和直線的位置與關系,考查鈍角三角形的判定以及三角形面積為定值的求解,關鍵是聯(lián)立方程,構(gòu)造方程,利用韋達定理,以及向量的關系,得到關于斜率的方程,計算量大,屬于難題.20.(1);(2).【解析】

試題分析:(1)先求導,然后利用導數(shù)等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設與交點的橫坐標為,利用導數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設直線與曲線切于點,則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調(diào)性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數(shù)為增函數(shù).故實數(shù)的取值范圍是考點:函數(shù)導數(shù)與不等式.【方法點晴】函數(shù)導數(shù)問題中,和切線有關的題目非常多,我們只要把握住關鍵點:一個是切點,一個是斜率,切點即在原來函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論