版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年遼寧省鞍山市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.A.A.
B.B.
C.C.
D.D.
4.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
5.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
6.
7.
8.。A.2B.1C.-1/2D.0
9.
10.()。A.
B.
C.
D.
11.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1
12.
13.下列等式中正確的是()。A.
B.
C.
D.
14.
15.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價(jià)無窮小D.等價(jià)無窮小
16.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()
A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定17.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)18.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
19.“目標(biāo)的可接受性”可以用()來解釋。
A.公平理論B.雙因素理論C.期望理論D.強(qiáng)化理論
20.擺動(dòng)導(dǎo)桿機(jī)構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點(diǎn)到滑竿CD間的距離為l,則關(guān)于滑竿上銷釘A的運(yùn)動(dòng)參數(shù)計(jì)算有誤的是()。
A.運(yùn)動(dòng)方程為x=ltan∮=ltanωt
B.速度方程為
C.加速度方程
D.加速度方程
二、填空題(20題)21.設(shè)z=xy,則dz=______.
22.
23.
24.
25.
26.
27.
28.過坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為______.
29.
30.
31.
32.
33.
34.35.36.
37.
38.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為______.
39.40.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.43.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
44.求微分方程y"-4y'+4y=e-2x的通解.
45.
46.
47.
48.49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.證明:52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則53.54.求微分方程的通解.
55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
58.
59.將f(x)=e-2X展開為x的冪級(jí)數(shù).60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.
62.
63.
64.
65.計(jì)算
66.
67.
68.
69.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).
70.
五、高等數(shù)學(xué)(0題)71.已知f(x)的一個(gè)原函數(shù)為(1+sinz)lnz,求∫xf(x)dx。
六、解答題(0題)72.
參考答案
1.B
2.C
3.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).
4.B
5.D
6.C
7.A
8.A
9.A
10.D
11.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.
12.B
13.B
14.B
15.B
16.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。
17.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
18.B
19.C解析:目標(biāo)的可接受性可用期望理論來理解。
20.C
21.yxy-1dx+xylnxdy
22.π/8
23.(01]
24.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:25.由可變上限積分求導(dǎo)公式可知
26.
27.28.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
29.-exsiny
30.-1
31.
解析:32.f(0).
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f(0)存在,并沒有給出f(x)(x≠0)存在,也沒有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
33.
34.
35.
36.
37.[e+∞)(注:如果寫成x≥e或(e+∞)或x>e都可以)。[e,+∞)(注:如果寫成x≥e或(e,+∞)或x>e都可以)。解析:38.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
39.
40.1/2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
由于
41.
42.
43.
44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
45.
46.
則
47.由一階線性微分方程通解公式有
48.
49.函數(shù)的定義域?yàn)?/p>
注意
50.
列表:
說明
51.
52.由等價(jià)無窮小量的定義可知
53.
54.
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
56.
57.由二重積分物理意義知
58.
59.60.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.
63.
64.
65.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
比較典型的錯(cuò)誤是利用換元計(jì)算時(shí),一些考生忘記將積分限也隨之變化.
66.
67.
68.
69.
70.
71.∫f"(x)dx=∫xdf(x)=xf(x)一∫f(x)dx∵f(x)的原函數(shù)為(1+sinx)Inx;
∴f(x)dx=(1+sinx)Inx+c∴原式=xcoslnx+(1+sinx)一(1+sinx)lnx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度高端寵物品種買賣及繁殖權(quán)轉(zhuǎn)讓合同范本3篇
- 2024版事業(yè)編人員聘用合同范本
- 2024消防設(shè)施改造合同范本
- 2025年度汽車用材料采購與銷售合作協(xié)議3篇
- 2024年食品加工生產(chǎn)外包合同
- 福建省南平市武夷山第二中學(xué)高一生物模擬試題含解析
- 福建省南平市外屯中學(xué)高一語文聯(lián)考試卷含解析
- 2025廠區(qū)綠化升級(jí)改造及養(yǎng)護(hù)綜合服務(wù)合同3篇
- 2024版事業(yè)單位醫(yī)療專業(yè)技術(shù)崗位聘用協(xié)議一
- 2024汽車美容店承包合同模板
- 幼兒園幼兒營養(yǎng)食譜手冊(cè)
- 《護(hù)理科研》課件
- 屋頂分布式光伏發(fā)電項(xiàng)目 投標(biāo)方案(技術(shù)方案)
- 2024宏泰集團(tuán)所屬湖北省征信限公司招聘9人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 部編版語文四年級(jí)下冊(cè)第六單元大單元作業(yè)設(shè)計(jì)
- 中國畜禽養(yǎng)殖污染物處理行業(yè)市場(chǎng)集中度、企業(yè)競(jìng)爭(zhēng)格局分析報(bào)告-智研咨詢發(fā)布
- DL∕T 2594-2023 電力企業(yè)標(biāo)準(zhǔn)化工作 評(píng)價(jià)與改進(jìn)
- 廣東省廣州白云區(qū)六校聯(lián)考2025屆九上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題含解析
- 2024年末端無人配送行業(yè)研究報(bào)告
- 肛瘺患者的護(hù)理查房
- 義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2024年版)
評(píng)論
0/150
提交評(píng)論