版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年吉林省長春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
2.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
3.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
4.
5.
6.當(dāng)x→0時,x+x2+x3+x4為x的
A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小
7.A.A.
B.
C.
D.
8.在特定工作領(lǐng)域內(nèi)運(yùn)用技術(shù)、工具、方法等的能力稱為()
A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確
9.級數(shù)(k為非零正常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
10.
A.0
B.
C.1
D.
11.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
12.
13.函數(shù)等于().
A.0B.1C.2D.不存在14.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確
15.
16.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性17.。A.2B.1C.-1/2D.0
18.
19.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個實(shí)根B.兩個實(shí)根C.三個實(shí)根D.無實(shí)根20.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
21.
22.
23.
24.函數(shù)z=x2-xy+y2+9x-6y+20有()
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-125.A.A.
B.
C.
D.
26.
27.設(shè)z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
28.A.
B.
C.
D.
29.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
30.()。A.2πB.πC.π/2D.π/4
31.以下結(jié)論正確的是().
A.
B.
C.
D.
32.
33.()。A.e-2
B.e-2/3
C.e2/3
D.e2
34.A.A.3B.1C.1/3D.0
35.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().
A.3
B.
C.1
D.1/3
36.
37.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較
38.
39.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
40.
41.
42.()。A.e-6
B.e-2
C.e3
D.e6
43.設(shè)x是f(x)的一個原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))
44.
45.
46.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
47.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]48.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.449.
50.
二、填空題(20題)51.設(shè)y=cos3x,則y'=__________。
52.53.
54.
55.
56.
57.
58.
59.
60.61.設(shè),則y'=________。62.
63.
64.
65.
66.
67.
68.69.
70.
三、計(jì)算題(20題)71.72.求微分方程的通解.73.證明:
74.
75.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.76.將f(x)=e-2X展開為x的冪級數(shù).77.
78.
79.求微分方程y"-4y'+4y=e-2x的通解.
80.
81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).82.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.83.84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.85.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則86.求曲線在點(diǎn)(1,3)處的切線方程.87.88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
89.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.將f(x)=sin3x展開為x的冪級數(shù),并指出其收斂區(qū)間。93.94.
95.
96.證明:ex>1+x(x>0).
97.
98.求∫sin(x+2)dx。
99.100.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.五、高等數(shù)學(xué)(0題)101.f(z,y)=e-x.sin(x+2y),求
六、解答題(0題)102.
參考答案
1.A
2.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對于z=x2y,求的時候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
3.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
4.A解析:
5.D
6.A本題考查了等價無窮小的知識點(diǎn)。
7.B本題考查的知識點(diǎn)為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時,由導(dǎo)數(shù)定義可得
8.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過程、慣例、技術(shù)和工具的能力。
9.A本題考查的知識點(diǎn)為無窮級數(shù)的收斂性.
由于收斂,可知所給級數(shù)絕對收斂.
10.A
11.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識點(diǎn)。
12.B
13.C解析:
14.D
15.A
16.A
17.A
18.B
19.B
20.C
21.A
22.D
23.A
24.D
25.C本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
26.A
27.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
28.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
29.C本題考查的知識點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
30.B
31.C
32.A
33.B
34.A
35.A解析:本題考查的知識點(diǎn)為判定極值的必要條件.
由于y=x3-ax,y'=3x2-a,令y'=0,可得
由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知
故應(yīng)選A.
36.A
37.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。
38.B
39.A
40.C解析:
41.A
42.A
43.Cx為f(x)的一個原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
44.A
45.A
46.A由于
可知應(yīng)選A.
47.B∵一1≤x一1≤1∴0≤x≤2。
48.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。
49.C
50.D
51.-3sin3x
52.
53.
54.3e3x3e3x
解析:
55.
56.2
57.
58.
59.
本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
60.解析:
61.62.e-1/2
63.
64.
65.e-2本題考查了函數(shù)的極限的知識點(diǎn),
66.
67.-2sin2-2sin2解析:68.1本題考查的知識點(diǎn)為定積分的換元積分法.
69.解析:
70.
71.
72.
73.
74.
75.
76.
77.
則
78.
79.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
80.由一階線性微分方程通解公式有
81.
列表:
說明
82.
83.84.由二重積分物理意義知
85.由等價無窮小量的定義可知86.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
87.
88.函數(shù)的定義域?yàn)?/p>
注意
89.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
90.
91.
92.
93.94.將方程兩端關(guān)于x求導(dǎo),得
95.
96.
97.
98.∫sin(x+2)dx=∫sin(x+2)d(x+2)=-cos(x+2)+C。
99.
100.由二重積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)化消防工程安裝協(xié)議范本(2024年版)版
- 2025年度廠區(qū)新能源發(fā)電項(xiàng)目合作協(xié)議3篇
- 2025年度電商大數(shù)據(jù)安全保護(hù)合作協(xié)議4篇
- 旅游業(yè)績深度剖析
- 專業(yè)汽車起重機(jī)租賃協(xié)議2024版范本版B版
- 二零二五年度智能化家居系統(tǒng)安裝合同3篇 - 副本
- 二零二五年度大渡口區(qū)吸污車租賃與環(huán)保技術(shù)研發(fā)協(xié)議3篇
- 2025年度測井設(shè)備研發(fā)與技術(shù)服務(wù)合同4篇
- 二零二五年度船舶航行安全GPS監(jiān)控合同文本3篇
- 2025年度公共場所場地借用及安全保障協(xié)議書2篇
- 品質(zhì)經(jīng)理工作總結(jié)
- 供電搶修述職報告
- 集成電路設(shè)計(jì)工藝節(jié)點(diǎn)演進(jìn)趨勢
- 新型電力系統(tǒng)簡介演示
- 特種設(shè)備行業(yè)團(tuán)隊(duì)建設(shè)工作方案
- 眼內(nèi)炎患者護(hù)理查房課件
- 肯德基經(jīng)營策略分析報告總結(jié)
- 買賣合同簽訂和履行風(fēng)險控制
- 中央空調(diào)現(xiàn)場施工技術(shù)總結(jié)(附圖)
- 水質(zhì)-濁度的測定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書-2023.09
評論
0/150
提交評論