下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.2.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.如圖,正方形網(wǎng)格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對4.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.5.若直線與曲線相切,則()A.3 B. C.2 D.6.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.7.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.8.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.9.函數(shù)(或)的圖象大致是()A. B. C. D.10.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件11.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點對稱;②函數(shù)是周期函數(shù);③當時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④12.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結(jié)論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是________________.14.曲線y=e-5x+2在點(0,3)處的切線方程為________.15.展開式中項系數(shù)為160,則的值為______.16.拋物線的焦點坐標為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大?。唬?)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.18.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).19.(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉(zhuǎn)為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設(shè)四個籃球館一個月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,20.(12分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.21.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.22.(10分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設(shè)P是橢圓上的動點,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設(shè)直線OA為,設(shè)點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).2.B【解析】
由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.3.C【解析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.4.A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關(guān)系,再根據(jù)點差法得到直線的斜率與坐標的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設(shè)而不求”的目的,大大簡化運算.5.A【解析】
設(shè)切點為,對求導,得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.6.B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.7.B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.8.A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.9.A【解析】
確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項.【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對稱,排除B,C,當時,,排除D,故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結(jié)論.10.B【解析】
解出兩個不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.11.A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關(guān)于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當時,,,,此時與無交點;當時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學生的分析和推理能力有較高要求.12.A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
①點在平面內(nèi)的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.14..【解析】
先利用導數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數(shù)的幾何意義和函數(shù)的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是15.-2【解析】
表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構(gòu)建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【點睛】本題考查由二項式指定項的系數(shù)求參數(shù),屬于簡單題.16.【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)66.5(2)屬于【解析】
(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應(yīng)用,意在考查學生對這些知識的理解掌握水平.18.(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調(diào)遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.19.(1)見解析,12.5(2)①②20【解析】
(1)運用分層抽樣,結(jié)合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數(shù)求導,結(jié)合單調(diào)性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設(shè),所以當遞增,當遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應(yīng)用,涉及求概率,平均數(shù)、擬合直線和導數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.20.(1);(2).【解析】
(1)根據(jù)離心率以及,即可列方程求得,則問題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達定理,根據(jù)題意中轉(zhuǎn)化出的,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 打贏疫情防控阻擊戰(zhàn)(超星集團)學習通測試及答案
- 【名師一號】2020-2021學年高中英語北師大版必修4-雙基限時練16
- 【優(yōu)教通】2021年高一生物同步練習:3章-細胞的結(jié)構(gòu)和功能-測試1(蘇教版必修1)-
- 2022高考英語暑假閱讀理解講練(21)及答案
- 【2022屆走向高考】高三數(shù)學一輪(北師大版)專題1-高考中的導數(shù)應(yīng)用問題
- 【9語一?!?024年蚌埠市懷遠縣中考一模語文試題
- 浙江省湖州市長興中學等四校2024-2025學年高一上學期12月聯(lián)考數(shù)學試題(含解析)
- 【名師伴你行】2021屆高考生物二輪復習專題提能專訓4細胞的生命歷程
- 第九課糾紛的多元解決方式單元測試(含解析)-2024-2025學年高中政治統(tǒng)編版選擇性必修二法律與生活
- 幼兒園年度教育教學工作總結(jié)范本
- 防火門工程施工組織設(shè)計方案
- 2023-2024學年新疆烏魯木齊130中學九年級(上)期末物理試卷
- 期末(試題)-2024-2025學年北師大版(三起)(2024)英語三年級上冊
- 2023-2024學年江蘇省徐州市九年級(上)期末物理試卷
- 《數(shù)據(jù)挖掘技術(shù)》教學大綱
- 部編版七年級下冊語文全冊表格教案樣本
- 燃燒仿真教程:湍流燃燒模型與化學反應(yīng)動力學
- 七年級上冊歷史小論文
- 2024至2030年中國工業(yè)地產(chǎn)市場全景調(diào)查及投資咨詢報告
- 上海大眾模具設(shè)計標準-結(jié)構(gòu)設(shè)計v1
- 分布式數(shù)據(jù)庫遷移風險評估與管理
評論
0/150
提交評論