版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山東省濱州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
A.1
B.2
C.x2+y2
D.TL
2.
3.控制工作的實(shí)質(zhì)是()
A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)
4.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定
5.
6.A.0或1B.0或-1C.0或2D.1或-1
7.
8.
9.
10.等于()A.A.
B.
C.
D.
11.
12.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
13.
14.
15.A.
B.
C.
D.
16.
17.
18.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
19.
20.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
二、填空題(20題)21.
22.過(guò)點(diǎn)M0(1,-2,0)且與直線(xiàn)垂直的平面方程為_(kāi)_____.23.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.
24.設(shè).y=e-3x,則y'________。
25.設(shè)y=cosx,則y"=________。
26.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
27.
28.
29.
30.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。
31.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
32.微分方程xdx+ydy=0的通解是__________。
33.設(shè)函數(shù)f(x)有連續(xù)的二階導(dǎo)數(shù)且f(0)=0,f'(0)=1,f''(0)=-2,則34.
35.
36.
37.
38.
39.40.過(guò)原點(diǎn)且與直線(xiàn)垂直的平面方程為_(kāi)_____.三、計(jì)算題(20題)41.
42.
43.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.求微分方程的通解.46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則47.證明:48.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.49.50.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.
52.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).
54.求微分方程y"-4y'+4y=e-2x的通解.
55.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
56.
57.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).58.59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.60.四、解答題(10題)61.62.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求
63.
64.65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
,求xzx+yzy=_____________。
六、解答題(0題)72.
參考答案
1.A
2.A解析:
3.A解析:控制工作的實(shí)質(zhì)是糾正偏差。
4.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
5.B解析:
6.A
7.B解析:
8.D
9.D
10.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.
由于
可知應(yīng)選C.
11.B
12.C
13.C解析:
14.B
15.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒(méi)有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
16.D
17.C
18.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知應(yīng)選C.
19.C
20.C
21.522.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線(xiàn)的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.
所給直線(xiàn)l的方向向量s=(3,-1,1).若所求平面π垂直于直線(xiàn)l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱(chēng)為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱(chēng)為平面的一般式方程.
23.
;
24.-3e-3x
25.-cosx
26.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿(mǎn)足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
27.
28.
29.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)解析:
30.π2因?yàn)椤?1f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。
31.-1
32.x2+y2=C33.-1
34.
35.36.F(sinx)+C
37.x
38.00解析:
39.40.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線(xiàn)的關(guān)系.
由于已知直線(xiàn)與所求平面垂直,可知所給直線(xiàn)的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
41.
則
42.由一階線(xiàn)性微分方程通解公式有
43.44.函數(shù)的定義域?yàn)?/p>
注意
45.46.由等價(jià)無(wú)窮小量的定義可知
47.
48.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
49.
50.
51.
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
53.
列表:
說(shuō)明
54.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
55.
56.
57.
58.
59.由二重積分物理意義知
60.
61.
62.本題考查的知識(shí)點(diǎn)為求抽象函數(shù)的偏導(dǎo)數(shù).
已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求.通常有兩種求解方法.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年八年級(jí)地理上冊(cè) 第四章 第三節(jié) 工業(yè)(工業(yè)的分布)教學(xué)實(shí)錄 (新版)新人教版
- 藥學(xué)人員個(gè)人工作總結(jié)
- 個(gè)人主管述職報(bào)告集合十篇
- 大病困難補(bǔ)助申請(qǐng)書(shū)集錦15篇
- 冀教版小學(xué)信息技術(shù)三年級(jí)上冊(cè)《六 漂亮的剪貼畫(huà)》教學(xué)實(shí)錄
- Unit 7 Happy Birthday Section A 2a~2e教學(xué)實(shí)錄-2024-2025學(xué)年人教版英語(yǔ)七年級(jí)上冊(cè)
- 研究食品工業(yè)與現(xiàn)代物流協(xié)同發(fā)展
- 物流行業(yè)發(fā)展?fàn)顩r及市場(chǎng)需求分析
- 跳蚤效應(yīng)詳解
- 2024六年級(jí)語(yǔ)文下冊(cè) 第二單元 習(xí)作:寫(xiě)作品梗概教學(xué)實(shí)錄第一課時(shí)教學(xué)實(shí)錄 新人教版
- 糖尿病的預(yù)防及治療幻燈片
- 綜合能力測(cè)試(一)附有答案
- 大學(xué)體育與健康智慧樹(shù)知到期末考試答案章節(jié)答案2024年齊魯師范學(xué)院
- 化學(xué)實(shí)驗(yàn)操作評(píng)分細(xì)則表
- 西安市蓮湖區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題【帶答案】
- JBT 14543-2024 無(wú)刷穩(wěn)速直流電動(dòng)機(jī)技術(shù)規(guī)范(正式版)
- 動(dòng)靜脈內(nèi)瘺的物理學(xué)檢查
- 中國(guó)麻辣燙行業(yè)市場(chǎng)發(fā)展前景研究報(bào)告-智研咨詢(xún)發(fā)布
- 【視神經(jīng)脊髓炎譜系疾病的探究進(jìn)展文獻(xiàn)綜述3800字】
- 思想道德與法治(海南大學(xué))智慧樹(shù)知到期末考試答案章節(jié)答案2024年海南大學(xué)
- 2022-2023學(xué)年湖南省永州市道縣湘少版(三起)三年級(jí)上冊(cè)期末考試英語(yǔ)試卷【含答案】
評(píng)論
0/150
提交評(píng)論