下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古自治區(qū)赤峰市巴林左旗林東第一中學2022-2023學年高一數(shù)學理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.古代數(shù)學著作《九章算術》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,該女子第二天織布多少尺?(
)A. B. C.9 D.10參考答案:B【分析】先根據(jù)題意,得到該女子每天所織布的長度構成等比數(shù)列,根據(jù)題意求出首項和公比,即可求出結果.【詳解】由題意可得,該女子每天所織布的長度構成等比數(shù)列,設公比為,首項為,前項和為,由題意可得,解得,所以第二天織的布為.故選B【點睛】本題主要考查等比數(shù)列的基本量運算,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎題型.2.在△ABC中,角A,B,C所對的邊分別是a,b,c,且,,,則A=(
)A.30°
B.45°
C.45°或135°
D.30°或150°參考答案:B,,,,又由正弦定理,得故選B.
3.命題“對任意的,”的否定是A.不存在, B.存在,C.存在, D.對任意的,參考答案:C【詳解】注意兩點:1)全稱命題變?yōu)樘胤Q命題;2)只對結論進行否定。“對任意的,”的否定是:存在,選C.4.(5分)下列能與sin20°的值相等的是() A. cos20° B. sin(﹣20°) C. sin70° D. sin160°參考答案:D考點: 誘導公式的作用.專題: 計算題.分析: 根據(jù)誘導公式可知cos20°=sin70°不等于sin20°,sin(﹣20°)=﹣sin20°不符合題意,sin70°≠sin20°,利用誘導公式可知sin160°=sin(180°﹣20°)=sin20°D項符合題意.解答: cos20°=sin70°,故A錯誤.sin(﹣20°)=﹣sin20°,故B錯誤.sin70°≠sin20°,故C錯誤.sin160°=sin(180°﹣20°)=sin20°故D正確.故選D.點評: 本題主要考查了誘導公式的運用.解題的過程中注意根據(jù)角的范圍判斷三角函數(shù)值的正負.5.由不等式確定的平面區(qū)域記為,不等式,確定的平面區(qū)域記為,在中隨機取一點,則該點恰好在內的概率為
參考答案:D6.三棱錐則二面角的大小為(
)A.90° B.60° C.45° D.30°參考答案:B【分析】P在底面的射影是斜邊的中點,設AB中點為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【詳解】因為AB=10,BC=8,CA=6所以底面為直角三角形又因為PA=PB=PC
所以P在底面的射影為直角三角形ABC的外心,為AB中點.設AB中點為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DEBC=4,所以∠PED即為二面角P﹣AC﹣B的平面角.因為PD為三角形PAB的中線,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小為60°故答案為:60°.7.已知函數(shù),若方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是(
)A. B. C. D.參考答案:A8.在△ABC中,,,E是邊BC的中點.O為△ABC所在平面內一點且滿足,則的值為(
)A. B.1 C. D.參考答案:D【分析】根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長的等量關系可知和為等腰三角形,根據(jù)三線合一的特點可將和化為和,代入可求得結果.【詳解】為中點
和為等腰三角形,同理可得:本題正確選項:【點睛】本題考查向量數(shù)量積的求解問題,關鍵是能夠利用模長的等量關系得到等腰三角形,從而將含夾角的運算轉化為已知模長的向量的運算.9.已知,則(
)A.
B.
C.
D.參考答案:B略10.已知等比數(shù)列的公比為正數(shù),且·=2,=1,則=A.
B.
C.
D.2參考答案:解析:設公比為,由已知得,即,又因為等比數(shù)列的公比為正數(shù),所以,故,選B二、填空題:本大題共7小題,每小題4分,共28分11.對于函數(shù),有下列3個命題:①任取,都有恒成立;②,對于一切恒成立;③函數(shù)在上有3個零點;則其中所有真命題的序號是
.參考答案:①③12.若集合,,,則的非空子集的個數(shù)為
。參考答案:
解析:,,非空子集有;13.設tanx=2,則cos2x﹣2sinxcosx=. 參考答案:﹣【考點】同角三角函數(shù)基本關系的運用. 【專題】三角函數(shù)的求值. 【分析】原式分母看做“1”,利用同角三角函數(shù)間的基本關系化簡,把tanx的值代入計算即可求出值. 【解答】解:∵tanx=2, ∴原式====﹣, 故答案為:﹣ 【點評】此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.14.設表示不超過的最大整數(shù),如,若函數(shù),則的值域為
參考答案:{-1,0}略15.(5分)若方程2x+x﹣5=0在區(qū)間(n,n+1)上有實數(shù)根,其中n為正整數(shù),則n的值為
.參考答案:1考點: 函數(shù)零點的判定定理.專題: 計算題;函數(shù)的性質及應用.分析: 方程2x+x﹣5=0在區(qū)間(n,n+1)上有實數(shù)根可化為函數(shù)f(x)=2x+x﹣5在區(qū)間(n,n+1)上有零點,從而由零點的判定定理求解.解答: 方程2x+x﹣5=0在區(qū)間(n,n+1)上有實數(shù)根可化為函數(shù)f(x)=2x+x﹣5在區(qū)間(n,n+1)上有零點,函數(shù)f(x)=2x+x﹣5在定義域上連續(xù),f(1)=2+1﹣5<0,f(2)=4+2﹣5>0;故方程2x+x﹣5=0在區(qū)間(1,2)上有實數(shù)根,故n的值為1;故答案為:1.點評: 本題考查了方程的根與函數(shù)的零點的關系應用,屬于基礎題.16.已知冪函數(shù)y=f(x)的圖象過點,則f(﹣2)=
.參考答案:【考點】冪函數(shù)的圖像;函數(shù)的值.【專題】待定系數(shù)法.【分析】設出冪函數(shù)的解析式,由圖象過(,8)確定出解析式,然后令x=﹣2即可得到f(﹣2)的值.【解答】解:設f(x)=xa,因為冪函數(shù)圖象過,則有8=,∴a=﹣3,即f(x)=x﹣3,∴f(﹣2)=(﹣2)﹣3=﹣故答案為:﹣【點評】考查學生會利用待定系數(shù)法求冪函數(shù)的解析式.會根據(jù)自變量的值求冪函數(shù)的函數(shù)值.17.(5分)直線y=k(x﹣1)+2與曲線x=有且只有一個交點,則k的取值范圍是
.參考答案:[1,3)考點: 直線與圓相交的性質.專題: 直線與圓.分析: 由曲線方程的特點得到此曲線表示在y軸右邊的單位圓的一半,可得出圓心坐標和圓的半徑r,然后根據(jù)題意畫出相應的圖形,根據(jù)圖形,直線恒過(1,2),由圖形過(1,2),(0,1)的直線的斜率為﹣1;過(1,2),(0,﹣1)的直線的斜率為3.,綜上,得到滿足題意的k的范圍.解答: 解:由題意可知:曲線方程表示一個在y軸右邊的單位圓的一半,則圓心坐標為(0,0),圓的半徑r=1,畫出相應的圖形,如圖所示:直線y=k(x﹣1)+2,恒過(1,2),由圖形過(1,2),(0,1)的直線的斜率為﹣1;過(1,2),(0,﹣1)的直線的斜率為3.綜上,直線與曲線只有一個交點時,k的取值范圍為[1,3).故答案為:[1,3).點評: 此題考查了直線與圓相交的性質,考查數(shù)形結合的思想,根據(jù)題意得出此曲線表示在y軸右邊的單位圓的一半,并畫出相應的圖形是解本題的關鍵.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.設.(1)若,求x的值;(2)若時,求a的取值范圍.
參考答案:解(1)證明:因為,所以,即.所以.由得,即或,即或.(2)因為時,所以時有,即.設,則.由得.因為關于t的二次函數(shù)在上單調遞增,所以的最小值在處取得,這個最小值為3,所以.
略19.(本小題滿分為14分)
已知,試判斷直線BA于PQ的位置關系,并證明你的結論。參考答案:平行。略20.已知是第二象限角,(1)若,求和的值;(2)化簡參考答案:略21.如果對于區(qū)間I內的任意,都有,則稱在區(qū)間I上函數(shù)的圖象位于函數(shù)圖象的上方.(1)已知求證:在上,函數(shù)的圖象位于的圖象的上方;(2)若在區(qū)間上,函數(shù)的圖象位于函數(shù)圖象的上方,求實數(shù)的取值范圍.參考答案:(1)對任意, ∵∴,∴∴ ∴在上,函數(shù)的圖象位于的圖象的上方;
(2)由題設知,對任意,總成立.即:在上恒成立. 令,則,記,
而在上是減函數(shù),在上也是減函數(shù)∴函數(shù)在上是減函數(shù) 所以在的最大值為∴所求實數(shù)的取值范圍象是 略22.已知f(x)是定義在R上的奇函數(shù),且x>0時,f(x)=﹣x2+x+1,求f(x)的解析式.參考答案:【考點】函數(shù)解析式的求解及常用方法.【分析】根據(jù)f(x)是定義在R上的奇函數(shù),可得f(0)=0,f(﹣x)=﹣f(x),x>0時,f(x)=﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能新能源汽車分期付款貸款協(xié)議書3篇
- 2025版?zhèn)€人房產買賣合同風險評估范本2篇
- 2025版?zhèn)€人房產買賣合同附土地使用協(xié)議
- 2025版托育中心拖育綜合服務中心改造項目合同3篇
- 2025版數(shù)據(jù)錄入與云端數(shù)據(jù)同步維護服務協(xié)議3篇
- 2025-2030全球微電腦注藥泵行業(yè)調研及趨勢分析報告
- 2025年度個人對個人短期投資借款合同
- 2024年民法典知識競賽題庫及參考答案解析(共50題)
- 2025年度水電工程安全監(jiān)督與管理承包協(xié)議4篇
- 2025年度鋼材原材料采購質量控制合同樣本
- 2024年蘇州工業(yè)園區(qū)服務外包職業(yè)學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學生版-專題08 古詩詞名篇名句默寫
- 2024-2025學年人教版(2024)七年級(上)數(shù)學寒假作業(yè)(十二)
- 山西粵電能源有限公司招聘筆試沖刺題2025
- ESG表現(xiàn)對企業(yè)財務績效的影響研究
- 醫(yī)療行業(yè)軟件系統(tǒng)應急預案
- 使用錯誤評估報告(可用性工程)模版
- 《精密板料矯平機 第2部分:技術規(guī)范》
- 2023-2024年同等學力經濟學綜合真題及參考答案
- 農村集體土地使用權轉讓協(xié)議
- 2024年高考全國甲卷英語試卷(含答案)
評論
0/150
提交評論