2022年江蘇省泰州市智堡實驗學(xué)校數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第1頁
2022年江蘇省泰州市智堡實驗學(xué)校數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第2頁
2022年江蘇省泰州市智堡實驗學(xué)校數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第3頁
2022年江蘇省泰州市智堡實驗學(xué)校數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第4頁
2022年江蘇省泰州市智堡實驗學(xué)校數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,正方形的頂點分別在軸和軸上,與雙曲線恰好交于的中點.若,則的值為()A.6 B.8 C.10 D.122.若一個矩形對折后所得矩形與原矩形相似,則此矩形的長邊與短邊的比是().A. B. C. D.3.下列事件中,必然事件是()A.打開電視,正在播放宜春二套 B.拋一枚硬幣,正面朝上C.明天會下雨 D.地球繞著太陽轉(zhuǎn)4.如圖,過點、,圓心在等腰的內(nèi)部,,,,則的半徑為()A. B. C. D.5.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標系內(nèi)的圖象大致為()A. B. C. D.6.下列各點中,在反比例函數(shù)圖象上的點是A. B. C. D.7.若x1是方程(a≠0)的一個根,設(shè),,則p與q的大小關(guān)系為()A.p<q B.p=q C.p>q D.不能確定8.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數(shù)根,則該三角形的面積是()A. B. C.或 D.或9.若函數(shù)y=的圖象在第一、三象限內(nèi),則m的取值范圍是()A.m>﹣3 B.m<﹣3 C.m>3 D.m<310.如圖,在平面直角坐標系內(nèi),四邊形OABC是矩形,四邊形ADEF是正方形,點A,D在x軸的正半軸上,點F在BA上,點B、E均在反比例函數(shù)y=(k≠0)的圖象上,若點B的坐標為(1,6),則正方形ADEF的邊長為()A.1 B.2 C.4 D.611.一元二次方程的一次項系數(shù)和常數(shù)項依次是()A.和 B.和 C.和 D.和12.如圖,PA是⊙O的切線,OP交⊙O于點B,如果,OB=1,那么BP的長是()A.4 B.2 C.1 D.二、填空題(每題4分,共24分)13.如圖,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于點D,則△ABD與△ADC的面積比為________.14.如圖,拋物線與直線交于A(-1,P),B(3,q)兩點,則不等式的解集是_____.15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,則這個等腰三角形的面積是_____.16.扇形的弧長為10πcm,面積為120πcm2,則扇形的半徑為_____cm.17.已知兩個相似三角形的周長比是,它們的面積比是________.18.如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____.三、解答題(共78分)19.(8分)學(xué)校要在教學(xué)樓側(cè)面懸掛中考勵志的標語牌,如圖所示,為了使標語牌醒目,計劃設(shè)計標語牌的寬度為BC,為了測量BC,在距教學(xué)樓20米的升旗臺P處利用測角儀測得教學(xué)樓AB的頂端點B的仰角為,點C的仰角為,求標語牌BC的寬度(結(jié)果保留根號)

20.(8分)拋物線的圖像與軸的一個交點為,另一交點為,與軸交于點,對稱軸是直線.(1)求該二次函數(shù)的表達式及頂點坐標;(2)畫出此二次函數(shù)的大致圖象;利用圖象回答:當取何值時,?(3)若點在拋物線的圖像上,且點到軸距離小于3,則的取值范圍為;21.(8分)如圖,拋物線與軸交于,兩點.(1)求該拋物線的解析式;(2)若拋物線交軸于點,在該拋物線的對稱軸上是否存在點,使得的周長最?。咳舸嬖?,求出點的坐標;若不存在,請說明理由22.(10分)如圖1,拋物線與x軸交于A,B兩點(點A位于點B的左側(cè)),與y軸負半軸交于點C,若AB=1.(1)求拋物線的解析式;(2)如圖2,E是第三象限內(nèi)拋物線上的動點,過點E作EF∥AC交拋物線于點F,過E作EG⊥x軸交AC于點M,過F作FH⊥x軸交AC于點N,當四邊形EMNF的周長最大值時,求點E的橫坐標;(3)在x軸下方的拋物線上是否存在一點Q,使得以Q、C、B、O為頂點的四邊形被對角線分成面積相等的兩部分?如果存在,求點Q的坐標;如果不存在,請說明理由.23.(10分)已知,二次函數(shù)的圖象,如圖所示,解決下列問題:(1)關(guān)于的一元二次方程的解為;(2)求出拋物線的解析式;(3)為何值時.24.(10分)如圖,AC是⊙O的一條直徑,AP是⊙O的切線.作BM=AB并與AP交于點M,延長MB交AC于點E,交⊙O于點D,連接AD.(1)求證:AB=BE;(2)若⊙O的半徑R=5,AB=6,求AD的長.25.(12分)如圖是反比例函數(shù)的圖象的一個分支.比例系數(shù)的值是________;寫出該圖象的另一個分支上的個點的坐標:________、________;當在什么范圍取值時,是小于的正數(shù)?如果自變量取值范圍為,求的取值范圍.26.計算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.

參考答案一、選擇題(每題4分,共48分)1、D【分析】作EH⊥x軸于點H,EG⊥y軸于點G,根據(jù)“OB=2OA”分別設(shè)出OB和OA的長度,利用矩形的性質(zhì)得出△EBG∽△BAO,再根據(jù)相似比得出BG和EG的長度,進而寫出點E的坐標代入反比例函數(shù)的解析式,即可得出答案.【詳解】作EH⊥x軸于點H,EG⊥y軸于點G設(shè)AO=a,則OB=2OA=2a∵ABCD為正方形∴∠ABC=90°,AB=BC∵EG⊥y軸于點G∴∠EGB=90°∴∠EGB=∠BOA=90°∠EBG+∠BEG=90°∴∠BEG=∠ABO∴△EBG∽△BAO∴∵E是BC的中點∴∴∴BG=,EG=a∴OG=BO-BG=∴點E的坐標為∵E在反比例函數(shù)上面∴解得:∴AO=,BO=故答案選擇D.【點睛】本題考查的是反比例函數(shù)與幾何的綜合,難度系數(shù)較高,解題關(guān)鍵是根據(jù)題意求出點E的坐標.2、C【分析】根據(jù)相似圖形對應(yīng)邊成比例列出關(guān)系式即可求解.【詳解】如圖,矩形ABCD對折后所得矩形與原矩形相似,則矩形ABCD∽矩形BFEA,設(shè)矩形的長邊長是a,短邊長是b,則AB=CD=EF=b,AD=BC=a,BF=AE=,根據(jù)相似多邊形對應(yīng)邊成比例得:,即∴∴故選C.【點睛】本題考查相似多邊形的性質(zhì),根據(jù)相似多邊形對應(yīng)邊成比例建立方程是關(guān)鍵.3、D【解析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:、打開電視,正在播放宜春二套,是隨機事件,故錯誤;、拋一枚硬幣,正面朝上是隨機事件,故錯誤;、明天會下雨是隨機事件,故錯誤;、地球繞著太陽轉(zhuǎn)是必然事件,故正確;故選:.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、A【分析】連接AO并延長,交BC于D,連接OB,根據(jù)垂徑定理得到BD=BC=3,根據(jù)等腰直角三角形的性質(zhì)得到AD=BD=3,根據(jù)勾股定理計算即可.【詳解】解:連接AO并延長,交BC于D,連接OB,∵AB=AC,∴AD⊥BC,∴BD=BC=3,∵△ABC是等腰直角三角形,∴AD=BD=3,∴OD=2,∴OB=,故選:A.【點睛】本題考查的是垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理等知識,掌握垂直弦的直徑平分這條弦,并且平分弦所對的兩條弧是解題的關(guān)鍵.5、D【分析】根據(jù)拋物線的圖像,判斷出的符號,從而確定一次函數(shù)、反比例函數(shù)的圖像的位置即可.【詳解】解:由拋物線的圖像可知:橫坐標為1的點,即在第四象限,因此;∴雙曲線的圖像分布在二、四象限;由于拋物線開口向上,∴,∵對稱軸為直線,∴;∵拋物線與軸有兩個交點,∴;∴直線經(jīng)過一、二、四象限;故選:.【點睛】本題主要考查二次函數(shù),一次函數(shù)以及反比例函數(shù)的圖象與解析式的系數(shù)關(guān)系,熟練掌握函數(shù)解析式的系數(shù)對圖像的影響,是解題的關(guān)鍵.6、B【分析】把各點的坐標代入解析式,若成立,就在函數(shù)圖象上.即滿足xy=2.【詳解】只有選項B:-1×(-2)=2,所以,其他選項都不符合條件.故選B【點睛】本題考核知識點:反比例函數(shù)的意義.解題關(guān)鍵點:理解反比例函數(shù)的意義.7、A【分析】把x1代入方程ax2-2x-c=0得ax12-2x1=c,作差法比較可得.【詳解】解:∵x1是方程ax2-2x-c=0(a≠0)的一個根,

∴ax12-2x1-c=0,即ax12-2x1=c,

則p-q=(ax1-1)2-(ac+1.5)

=a2x12-2ax1+1-1.5-ac

=a(ax12-2x1)-ac-0.5

=ac-ac-0.5

=-0.5,

∵-0.5<0,

∴p-q<0,

∴p<q.

故選:A.【點睛】本題主要考查一元二次方程的解及作差法比較大小,熟練掌握能使方程成立的未知數(shù)的值叫做方程的解,利用比差法比較大小是解題的關(guān)鍵.8、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當?shù)谌呴L為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當?shù)谌呴L為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據(jù)三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當?shù)谌呴L為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當?shù)谌呴L為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質(zhì),勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.9、C【分析】根據(jù)反比例函數(shù)的性質(zhì)得m﹣1>0,然后解不等式即可.【詳解】解:根據(jù)題意得m﹣1>0,解得m>1.故選:C.【點睛】本題主要考查的是反比例函數(shù)的性質(zhì),當k>0時,圖像在第一、三象限內(nèi),根據(jù)這個性質(zhì)即可解出答案.10、B【分析】由點B的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出k值,設(shè)正方形ADEF的邊長為a,由此即可表示出點E的坐標,再根據(jù)反比例函數(shù)圖象上點的坐標特征即可得出關(guān)于a的一元二次方程,解之即可得出結(jié)論.【詳解】∵點B的坐標為(1,1),反比例函數(shù)y的圖象過點B,∴k=1×1=1.設(shè)正方形ADEF的邊長為a(a>0),則點E的坐標為(1+a,a).∵反比例函數(shù)y的圖象過點E,∴a(1+a)=1,解得:a=2或a=﹣3(舍去),∴正方形ADEF的邊長為2.故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、矩形的性質(zhì)以及正方形的性質(zhì),根據(jù)反比例函數(shù)圖象上點的坐標特征得出關(guān)于a的一元二次方程是解答本題的關(guān)鍵.11、B【解析】根據(jù)一元二次方程的一般形式進行選擇.【詳解】解:2x2-x=1,

移項得:2x2-x-1=0,

一次項系數(shù)是-1,常數(shù)項是-1.

故選:B.【點睛】此題主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b分別叫二次項系數(shù),一次項系數(shù).12、C【分析】根據(jù)題意連接OA由切線定義可知OA垂直AP且OA為半徑,以此進行分析求解即可.【詳解】解:連接OA,已知PA是⊙O的切線,OP交⊙O于點B,可知OA垂直AP且OA為半徑,所以三角形OAP為直角三角形,∵,OB=1,∴,OA=OB=1,∴OP=2,BP=OP-OB=2-1=1.故選C.【點睛】本題結(jié)合圓的切線定義考查解直角三角形,熟練掌握圓的切線定義以及解直角三角形相關(guān)概念是解題關(guān)鍵.二、填空題(每題4分,共24分)13、1:1【分析】根據(jù)∠BAC=90°,可得∠BAD+∠CAD=90°,再根據(jù)垂直的定義得到∠ADB=∠CDA=90°,利用三角形的內(nèi)角和定理可得∠B+∠BAD=90°,根據(jù)同角的余角相等得到∠B=∠CAD,利用兩對對應(yīng)角相等兩三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根據(jù)相似三角形的面積比等于相似比(對應(yīng)邊的之比)的平方即可求出結(jié)果.【詳解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案為1:1.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似比即為對應(yīng)邊之比,周長比等于相似比,面積之比等于相似比的平方是解決問題的關(guān)鍵.14、或.【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對稱,由此可知拋物線與直線交于,兩點,再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點,∴,,∴拋物線與直線交于,兩點,觀察函數(shù)圖象可知:當或時,直線在拋物線的下方,∴不等式的解集為或.故答案為或.【點睛】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.15、3.1或4.32或4.2【解析】在Rt△ABC中,通過解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面積即可.【詳解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB?BC=1.沿過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,有三種情況:①當AB=AP=3時,如圖1所示,S等腰△ABP=?S△ABC=×1=3.1;②當AB=BP=3,且P在AC上時,如圖2所示,作△ABC的高BD,則BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=?S△ABC=×1=4.32;③當CB=CP=4時,如圖3所示,S等腰△BCP=?S△ABC=×1=4.2;綜上所述:等腰三角形的面積可能為3.1或4.32或4.2,故答案為3.1或4.32或4.2.【點睛】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形的面積,找出所有可能的分割方法,并求出剪出的等腰三角形的面積是解題的關(guān)鍵.16、1【分析】根據(jù)扇形面積公式和扇形的弧長公式之間的關(guān)系:S扇形,把對應(yīng)的數(shù)值代入即可求得半徑r的長.【詳解】解:∵S扇形,∴,∴.故答案為1.【點睛】本題考查了扇形面積和弧長公式之間的關(guān)系,解此類題目的關(guān)鍵是掌握住扇形面積公式和扇形的弧長公式之間的等量關(guān)系:S扇形.17、【解析】根據(jù)相似三角形的性質(zhì)直接解答即可.解:∵兩個相似三角形的周長比是1:3,∴它們的面積比是,即1:1.故答案為1:1.本題考查的是相似三角形的性質(zhì),即相似三角形(多邊形)的周長的比等于相似比;面積的比等于相似比的平方.18、或1【分析】分兩種情況:①當DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折疊的性質(zhì)得EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=110°,證出D、E、N三點共線,設(shè)BN=EN=xcm,則GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②當CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=1(含CE=DE這種情況);【詳解】解:分兩種情況:①當DE=DC時,連接DM,作DG⊥BC于G,如圖1所示:∵四邊形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設(shè)BN=EN=x,則GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②當CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖1所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=1(含CE=DE這種情況);綜上所述,當△CDE為等腰三角形時,線段BN的長為或1;故答案為:或1.【點睛】本題主要考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理,掌握折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理是解題的關(guān)鍵.三、解答題(共78分)19、BC=【分析】根據(jù)正切的定義求出,根據(jù)等腰直角三角形的性質(zhì)求出,結(jié)合圖形計算,得到答案.【詳解】解:由題意知,PD=20,,在中,,則,在中,,,,故答案為:.【點睛】本題考查的是解直角三角形的應(yīng)用仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.20、(1),;(2)見解析,或;(3)【分析】(1)根據(jù)圖像對稱軸是直線,得到,再將,代入解析式,得到關(guān)于a、b、c的方程組,即可求得系數(shù),得到解析式,再求出頂點坐標即可;(2)根據(jù)特定點畫出二次函數(shù)的大致圖象,根據(jù)二次函數(shù)與不等式的關(guān)系,即可得到對應(yīng)的x的取值范圍.(3)求出當時,當時,y的值,即可求出的取值范圍.【詳解】(1)因為圖像對稱軸是直線,所以,將,代入解析式,得:由題知,解得,所以解析式為:;當時,,所以頂點坐標.(2)二次函數(shù)的大致圖象:當或,.(3)當時,得,當時,得,所以y取值范圍為,即的取值范圍為.【點睛】本題考查了待定系數(shù)法的求解析式、二元一次方程與不等式的關(guān)系,本題難度不大,是二次函數(shù)中經(jīng)常考查的類型.21、(1);(2)存在,當?shù)闹荛L最小時,點的坐標為.【分析】(1)直接利用待定系數(shù)求出二次函數(shù)解析式即可;

(2)首先求出直線BC的解析式,再利用軸對稱求最短路線的方法得出答案.【詳解】(1)拋物線與軸交于兩點解得:該拋物線的解析式為(2)該拋物線的對稱軸上存在點,使得的周長最?。缃鈭D所示,作點關(guān)于拋物線對稱軸的對稱點,連接,交對稱軸于點,連接,點關(guān)于拋物線對稱軸的對稱點,且,交對稱軸于點,的周長為,為拋物線對稱軸上一點,的周長,當點處在解圖位置時,的周長最小.在中,當時,,,,拋物線的對稱軸為直線,點是點關(guān)于拋物線對稱軸直線的對稱點,且.設(shè)過點兩點的直線的解析式為:,在直線上,,解得:,直線的解析式為:,拋物線對稱軸為直線,且直線與拋物線對稱軸交于點,在中,當時,,,在該拋物線的對稱軸上存在點,使得的周長最小,當?shù)闹荛L最小時,點的坐標為【點睛】此題主要考查了二次函數(shù)綜合應(yīng)用以及待定系數(shù)法求一次函數(shù)、二次函數(shù)解析式等知識,能正確理解題意是解題關(guān)鍵.22、(1);見解析;(2);見解析;(3)存在,點Q的坐標為:(﹣1,﹣1)或(﹣,﹣)或(,);詳解解析.【分析】(1)=0,則根據(jù)根與系數(shù)的關(guān)系有AB=,即可求解;(2)設(shè)點E,點F,四邊形EMNF的周長C=ME+MN+EF+FN,即可求解;(3)分當點Q在第三象限、點Q在第四象限兩種情況,分別求解即可.【詳解】解:(1)依題意得:=0,則,則AB=,解得:a=5或﹣3,拋物線與y軸負半軸交于點C,故a=5舍去,則a=﹣3,則拋物線的表達式為:…①;(2)由得:點A、B、C的坐標分別為:、,設(shè)點E,OA=OC,故直線AC的傾斜角為15°,EF∥AC,直線AC的表達式為:y=﹣x﹣3,則設(shè)直線EF的表達式為:y=﹣x+b,將點E的坐標代入上式并解得:直線EF的表達式為:y=﹣x+…②,聯(lián)立①②并解得:x=m或﹣3﹣m,故點F,點M、N的坐標分別為:、,則EF=,四邊形EMNF的周長C=ME+MN+EF+FN=,∵﹣2<0,故S有最大值,此時m=,故點E的橫坐標為:;(3)①當點Q在第三象限時,當QC平分四邊形面積時,則,故點Q;當BQ平分四邊形面積時,則,則,解得:,故點Q;②當點Q在第四象限時,同理可得:點Q;綜上,點Q的坐標為:或或.【點睛】本題考查的是二次函數(shù)的綜合運用,涉及到一次函數(shù)、圖形的面積計算等,其中(1)(3)都要注意分類求解,避免遺漏.23、(1)-1或2;(2)拋物線解析式為y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接觀察圖象,拋物線與x軸交于-1,2兩點,所以方程的解為x1=-1,x2=2.

(2)設(shè)出拋物線的頂點坐標形式,代入坐標(2,0),即可求得拋物線的解析式.

(2)若y<0,則函數(shù)的圖象在x軸的下方,找到對應(yīng)的自變量取值范圍即可.【詳解】解:(1)觀察圖象可看對稱軸出拋物線與x軸交于x=-1和x=2兩點,

∴方程的解為x1=-1,x2=2,

故答案為:-1或2;

(2)設(shè)拋物線解析式為y=-(x-1)2+k,

∵拋物線與x軸交于點(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴拋物線解析式為y=-(x-1)2+4,

即:拋物線解析式為y=-x2+2x+2;

(2)拋物線與x軸的交點(-1,0),(2,0),當y<0時,則函數(shù)的圖象在x軸的下方,由函數(shù)的圖象可知:x>2或x<-1;【點睛】本題主要考查了二次函數(shù)與一元二次方程、不等式的關(guān)系,以及求函數(shù)解析式的方法,能從圖像中得到關(guān)鍵信息是解決此題的關(guān)鍵.24、(1)見解析;(2)AD=.【分析】(1)由切線的性質(zhì)可得∠BAE+∠MAB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論