2022年福建省龍巖市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022年福建省龍巖市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022年福建省龍巖市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022年福建省龍巖市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022年福建省龍巖市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年福建省龍巖市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

3.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

4.

5.

6.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

7.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1

8.A.A.-3/2B.3/2C.-2/3D.2/3

9.A.A.>0B.<0C.=0D.不存在

10.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

11.A.A.sin(x-1)+C

B.-sin(x-1)+C

C.sinx+C&nbsbr;

D.-sinx+C

12.設(shè)f'(x)=1+x,則f(x)等于().A.A.1

B.X+X2+C

C.x++C

D.2x+x2+C

13.

14.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

15.

16.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

17.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

18.

19.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無窮小B.等價(jià)無窮小C.同階無窮小,但不是等價(jià)無窮小D.低階無窮小

20.

二、填空題(20題)21.

22.

23.

24.級(jí)數(shù)的收斂區(qū)間為______.

25.

26.

27.

28.

29.

30.

31.∫x(x2-5)4dx=________。

32.

33.

34.

35.

36.設(shè)函數(shù)f(x)有連續(xù)的二階導(dǎo)數(shù)且f(0)=0,f'(0)=1,f''(0)=-2,則

37.

38.設(shè)f(x)=xex,則f'(x)__________。

39.

40.

三、計(jì)算題(20題)41.

42.將f(x)=e-2X展開為x的冪級(jí)數(shù).

43.求曲線在點(diǎn)(1,3)處的切線方程.

44.求微分方程y"-4y'+4y=e-2x的通解.

45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

46.

47.

48.

49.證明:

50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

53.求微分方程的通解.

54.研究級(jí)數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

56.

57.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.

59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

60.

四、解答題(10題)61.

62.

63.

64.

65.

66.

67.求微分方程y"-y'-2y=ex的通解。

68.計(jì)算不定積分

69.求微分方程y"-y'-2y=3ex的通解.

70.

五、高等數(shù)學(xué)(0題)71.

的極大值是_________;極小值是________。

六、解答題(0題)72.

參考答案

1.B解析:

2.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

3.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

4.A

5.A

6.C

7.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.

8.A

9.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對稱區(qū)間。由定積分的對稱性質(zhì)知選C。

10.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

11.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

可知應(yīng)選A.

12.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

可知應(yīng)選C.

13.D

14.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).

可知應(yīng)選C.

15.C

16.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

17.B

18.C解析:

19.C本題考查的知識(shí)點(diǎn)為無窮小階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無窮小,但不是等價(jià)無窮小,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小盧與無窮小α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

20.C

21.

解析:

22.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.

23.

24.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

所給級(jí)數(shù)為不缺項(xiàng)情形.

可知收斂半徑,因此收斂區(qū)間為

(-1,1).

注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).

本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過于緊張而導(dǎo)致的錯(cuò)誤.

25.

解析:

26.

27.

28.(-1,1)。

本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間。

所給級(jí)數(shù)為不缺項(xiàng)情形。

(-1,1)。注《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn)。本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過于緊張而導(dǎo)致的錯(cuò)誤。

29.

30.1.

本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.

31.

32.5

33.1

34.0

35.e.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

36.-1

37.

38.(1+x)ex

39.f(x)+Cf(x)+C解析:

40.

41.

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

45.

列表:

說明

46.

47.

48.由一階線性微分方程通解公式有

49.

50.由等價(jià)無窮小量的定義可知

51.

52.

53.

54.

55.函數(shù)的定義域?yàn)?/p>

注意

56.

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.由二重積分物理意義知

60.

61.

62.

63.

64.

65.

66.

67.

68.

本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

只需將被積函數(shù)進(jìn)行恒等變形,使之成為標(biāo)準(zhǔn)積分公式形式的函數(shù)或易于利用變量替換求積分的函數(shù).

69.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=Aex.代入原方程可得

原方程的通解為

本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.

由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的一個(gè)特解y*.

其中Y可以通過求解特征方程得特征根而求出.而yq*可以利用待定系數(shù)法求解.

70.

71.駐點(diǎn)x=一22

∴x=一2時(shí)取極大值y(一2)=一4;∴x=2時(shí)取極小值y(2)=4駐點(diǎn)x=一2,2

∴x=一2時(shí)取極大值y(一2)=一4;∴x=2時(shí)取極小值y(2)=4

72.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.

積分區(qū)域D如圖2—1所示

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論